Covid-19

HSS/ Horizon Scanning
Living Document V15 June 2021
Covid-19

HSS/ Horizon Scanning
Living Document V15 June 2021
Projektteam
Projektleitung: PD Dr. Claudia Wild

Projektbearbeitung
Updates: Mirjana Huic, MD, MSc, PhD

Projektbeteiligung
Kontroll- und Formatierarbeiten: Ozren Sehic, BA; Smiljana Blagojevic, Dipl.-Ing.

Korrespondenz: Claudia Wild, claudia.wild@aihta.at
Umschlagfoto: @ Mike Fouque – stock.adobe.com

Dieser Bericht soll folgendermaßen zitiert werden/This report should be referenced as follows:

Wien: HTA Austria – Austrian Institute for Health Technology Assessment GmbH.

Interessenskonflikt
Alle beteiligten AutorInnen erklären, dass keine Interessenskonflikte im Sinne der Uniform Requirements of Manuscripts Statement of Medical Journal Editors (www.icmje.org) bestehen.

IMPRESSUM
Medieninhaber und Herausgeber:
HTA Austria - Austrian Institute for Health Technology Assessment GmbH
Garnisonsgasse 7/Top20 | 1090 Wien – Österreich
www.aihta.ac.at

Für den Inhalt verantwortlich:
Priv.-Doz. Dr. phil. Claudia Wild, Geschäftsführung

Die AIHTA Policy Briefs erscheinen unregelmäßig und dienen der Veröffentlichung der Forschungsergebnisse des Austrian Institute for Health Technology Assessment.

AIHTA Policy Brief Nr.: 002
ISSN 2710-3234
ISSN online 2710-3242
© 2021 AIHTA – Alle Rechte vorbehalten
Content

1 Background: policy question and methods .. 7
 1.1 Policy Question .. 7
 1.2 Methodology ... 7
 1.3 Selection of Products for “Vignettes” ... 10

2 Results: Vaccines .. 13
 2.1 Moderna Therapeutics—US National Institute of Allergy .. 24
 2.2 University of Oxford/ Astra Zeneca .. 24
 2.3 BioNTech/Fosun Pharma/Pfizer .. 25
 2.4 Janssen Pharmaceutical/ Johnson & Johnson ... 27
 2.5 Novavax ... 28
 2.6 CureVac .. 30
 2.7 Sanofi and GSK ... 31
 2.8 Valneva .. 33
 2.9 Sinovac Life Science Co., Ltd .. 33

3 Results: Therapeutics ... 35
 3.1 Remdesivir (Veklury®) .. 42
 3.2 Lopinavir + Ritonavir (Kaletra®) .. 42
 3.3 Favipiravir (Avigan®) .. 42
 3.4 Darunavir .. 52
 3.5 Chloroquine (Resochin®) and ... 54
 3.6 Hydroxychloroquine (Plaquenil®) .. 54
 3.7 Camostat Mesilate (Foipan®) .. 54
 3.8 APN01/ Recombinant Human Angiotensin-converting Enzyme 2 (rhACE2) 55
 3.9 Tocilizumab (Roactemra®) ... 56
 3.10 Sarilumab (Kevzara®) ... 56
 3.11 Interferon beta 1a (SNG001) (Rebif®, Avonex®) and Interferon beta 1b (Betaferon®, Extavia®) ... 60
 3.12 Convalescent plasma transfusion .. 64
 3.13 Plasma derived medicinal products .. 72
 3.13.1 REGN-COV2 - combination of two monoclonal antibodies (REGN10933 and REGN10987) ... 72
 3.13.2 LY-CoV555 - neutralizing IgG1 monoclonal antibody (bamlanivimab) and LY-CoV016 - recombinant fully human monoclonal neutralizing antibody (etezavimab) ... 76
 3.13.3 AZD7442 - combination of two monoclonal antibodies (AZD8895 + AZD1061) 87
 3.13.4 Sotrovimab (VIR-7831 monoclonal antibody) ... 87
 3.13.5 Regdanvimab (CT-P59) ... 90
 3.14 Combination therapy – triple combination of interferon beta-1b, lopinavir–ritonavir and ribavirin vs. lopinavir–ritonavir or other triple combination of interferons ... 91
 3.15 Solnateide .. 91
 3.16 Umifenovir (Arbidol®) ... 92
 3.17 Dexamethasone and other corticosteroids .. 96
 3.17.1 Inhaled corticosteroids: Budesonide .. 96
 3.18 Anakinra (Kineret®) .. 98
 3.19 Colchicine .. 101
 3.20 Nafamostat (Futhan®) ... 106
 3.21 Gimsilumab .. 106
 3.22 Canakinumab .. 106
 3.23 Lenzilumab .. 107
3.24 Vitamin D .. 108
3.25 Olumiant (Baricitinib) ... 112
3.26 Molnupiravir ... 116
3.27 Ivermectin .. 117
3.28 Aspirin (acetylsalicylic acid) ... 122
3.29 ZYESAMI™ (Avipathil, RLFI-100) ... 124
3.30 Dimethyl fumarate ... 126
3.31 Artesunate .. 126

References .. 128

Figures

Figure 1.2-1: A living mapping of ongoing randomized trials, living systematic reviews with pairwise meta-analyses and network meta-analyses .. 9

Figure 1.2-2: Global Coronavirus COVID-19 Clinical Trial Tracker - a real-time dashboard of clinical trials for COVID-19 .. 10

Tables

Table 1.2-1: International Sources ... 8

Table 2-1: Vaccines contracted or exploratory talks have concluded for EU, in the R&D pipeline (Phase 1 - Phase 4 clinical trials, not preclinical stages), April 9, 2021 .. 19

Table 2-2: SARS-CoV-2 variants of concern in EU and vaccines contracted or exploratory talks have concluded for EU, and some vaccines not contracted nor exploratory trials have concluded for EU: clinical effectiveness and in-vitro neutralisation .. 20

Table 2-3: COVID-19 Vaccines in development in children .. 21

Table 2-4: Intranasal vaccine in development .. 23

Table 3-1: COVID-19 medicines that have received EMA advice 40

Table 3-2: Most advanced therapeutics in the R&D pipeline ... 41

Table 3.3-1: Summary of findings table on favipiravir compared to umifenovir (1 RCT: Chen) 47

Table 3.3-2: Summary of findings table on favipiravir compared to baloxavir marboxil (1 RCT: Lou 2020) ... 49

Table 3.3-3: Summary of findings table on favipiravir compared to lopinavir + ritonavir or darunavir/cobicistat + umifenovir + interferon-a (1 RCT: Lou 2020) ... 50

Table 3.3-4: Summary of findings table on favipiravir compared to standard care (6 RCTs: Lou 2020, Ivaschchenko 2020, Dabbous 2020, Balykova 2020, Ruzhentsova 2020, Udawia 2020) 51

Table 3.4-1: Summary of findings table on darunavir/cobicistat compared to standard care (1 RCT: Chen J) .. 53

Table 3.10-1: Summary of findings table on Sarilumab compared to Standard Care for Severe/Critical COVID-19 (2 RCTs: Gordon REMAP-CAP, Lescure) .. 59

Table 3.11-1: Summary of findings table on Interferon β-1a compared to Standard Care for Hospitalised COVID-19 patients (4 RCTs: Davoudi-Monfared, Rahmani, SOLIDARITY-INF, Darazam COVIFERON) ... 63

Table 3.12-1: Summary of findings table on Convalescent plasma compared to Standard Care for Mild/Moderate/Severe/Critical COVID-19 (16 RCTs: Li, Gharbharan, Avendano-Sola, Agarwal, AlQahtani, Simonovich, Libster, Ray, Rasheed, Salmon, Horby RECOVERY, ODonnell, Bajpai, Pouladzadeh, Bennett-Guerrero, Koerper) .. 70

Table 3.13-1: Pseudovirus neutralization data for SARS-CoV-2 variant substitutions with Casirivimab and Imdevimab together .. 73
Table 3.13-2: Pseudovirus neutralization data for SARS-CoV-2 variant substitutions with bamlanivimab plus etesevimab together (1:2 molar ration).......................... 77
Table 3.13-3: Summary of findings (SoF) table for published RCTs related to effectiveness and safety of bamlanivimab monotherapy (all doses) compared to placebo and bamlanivimab + etesevimab combination treatment – OUTPATIENT (1 RCT: Gottlieb 2021) ... 81
Table 3.13-4: Summary of findings (SoF) table for published RCT related to effectiveness and safety of bamlanivimab monotherapy (700 mg) compared to placebo and bamlanivimab (2800 mg) + etesevimab (2800 mg) combination treatment – OUTPATIENT (1 RCT: Gottlieb 2021) 82
Table 3.13-5: Summary of findings (SoF) table for published RCTs related to effectiveness and safety of bamlanivimab + etesevimab combination compared to placebo – OUTPATIENT (1 RCT: Gottlieb 2021) ... 84
Table 3.13-6: Summary of findings (SoF) table for published RCTs related to effectiveness and safety of bamlanivimab compared to standard treatment/placebo – HOSPITALISED (1 RCT: Lundgren et al. 2020) ... 85
Table 3.16-1: Summary of findings table, on umifenovir vs standard care (2 RCTs: Yueping, Yethindra) .. 94
Table 3.17-1: Summary of findings table, on budesonide vs standard care (2 RCTs: Ramakrishnan, Yu) .. 97
Table 3.18-1: Summary of findings table, on anakinra (2 RCTs: CORIMUNO-19 Collaborative group, Kyriazopoulou - SAVE-MORE) .. 100
Table 3.19-1: Summary of findings table on colchicine compared to standard care (4 RCTs: Deftereos, Lopes, Salehzadeh, RECOVERY Collaborative Group) 104
Table 3.24-1: Summary of findings table on Vitamin D compared to standard care (3 RCT: Entrenas Castillo, Rastogi, Murai)... 111
Table 3.25-1: Summary of findings table, on baricitinib + remdesivir (1 RCT: Kalil 2020)... 115
<table>
<thead>
<tr>
<th>History of Changes</th>
<th>V15 June 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2021</td>
<td>Addition chapter on Artesunate (chapter 3.31)</td>
</tr>
<tr>
<td>June 2021</td>
<td>Methodology (1.2) – no changes</td>
</tr>
<tr>
<td>June 2021</td>
<td>Update Vaccine (chapter 2)</td>
</tr>
<tr>
<td>June 2021</td>
<td>Update Remdesivir (chapter 3.1)</td>
</tr>
<tr>
<td>June 2021</td>
<td>Update Favipiravir (chapter 3.3)</td>
</tr>
<tr>
<td>June 2021</td>
<td>Darunavir (chapter 3.4) – no changes</td>
</tr>
<tr>
<td>June 2021</td>
<td>Camostat Mesilate (chapter 3.7) – no changes</td>
</tr>
<tr>
<td>June 2021</td>
<td>Update APN01/rhACE2 (chapter 3.8)</td>
</tr>
<tr>
<td>June 2021</td>
<td>Update Tocilizumab (chapter 3.9)</td>
</tr>
<tr>
<td>June 2021</td>
<td>Update Sarilumab (chapter 3.10)</td>
</tr>
<tr>
<td>June 2021</td>
<td>Update Interferon beta (chapter 3.11)</td>
</tr>
<tr>
<td>June 2021</td>
<td>Update Conalescent plasma (chapter 3.12)</td>
</tr>
<tr>
<td>June 2021</td>
<td>Update Plasma derived medicinal products (chapter 3.13) – REGN-COV2; LY-CoV555 and LY-CoV016 (Bamlanivimab and etesevimab); AZD7422; VIR-7831 (Sotrovimab); Regdanvimab</td>
</tr>
<tr>
<td>June 2021</td>
<td>Combination therapy (chapter 3.14) – no changes</td>
</tr>
<tr>
<td>June 2021</td>
<td>Solnatide (chapter 3.15) – no changes</td>
</tr>
<tr>
<td>June 2021</td>
<td>Umifenovir (chapter 3.16) – no changes</td>
</tr>
<tr>
<td>June 2021</td>
<td>Update Inhaled corticosteroids (chapter 3.17.1)</td>
</tr>
<tr>
<td>June 2021</td>
<td>Update Anakinra (chapter 3.18)</td>
</tr>
<tr>
<td>June 2021</td>
<td>Update Colchicine (chapter 3.19)</td>
</tr>
<tr>
<td>June 2021</td>
<td>Nafamostat (chapter 3.20) – no changes</td>
</tr>
<tr>
<td>June 2021</td>
<td>Gimsilumab (chapter 3.21) – no changes</td>
</tr>
<tr>
<td>June 2021</td>
<td>Canakinumab (chapter 3.22) – no changes</td>
</tr>
<tr>
<td>June 2021</td>
<td>Lenzilumab (chapter 3.23) – no changes</td>
</tr>
<tr>
<td>June 2021</td>
<td>Vitamin D (chapter 3.24) – no changes</td>
</tr>
<tr>
<td>June 2021</td>
<td>Update Baricitinib (chapter 3.25)</td>
</tr>
<tr>
<td>June 2021</td>
<td>Update Molnupiravir (chapter 3.26)</td>
</tr>
<tr>
<td>June 2021</td>
<td>Update Ivermectin (chapter 3.27)</td>
</tr>
<tr>
<td>June 2021</td>
<td>Update Aspirin (chapter 3.28)</td>
</tr>
<tr>
<td>June 2021</td>
<td>Aviptadil (RLF-100) (chapter 3.29) – no changes</td>
</tr>
<tr>
<td>June 2021</td>
<td>Dimethyl fumarate (chapter 3.30) – no changes</td>
</tr>
</tbody>
</table>
1 Background: policy question and methods

1.1 Policy Question

On March 30th 2020, a request was raised by the Austrian Ministry of Health (BMASGK), the Health Funds of the Regions and the Federation of Social Insurances to set up a Horizon Scanning system (HSS) for medicines and vaccines. The establishment of a HSS/ Horizon Scanning System for Covid-19 interventions has the intentions of

a. informing health policy makers at an early stage which interventions (vaccinations and drugs) are currently undergoing clinical trials and
b. monitoring them over the next few months in order to support evidence-based purchasing, if necessary.

1.2 Methodology

To respond to this request,

1. As a first step an inventory, based on international sources, is built.
2. As a second step, selective searches by means of searches in study registries are carried out for information on clinical studies in humans and the state of research.
3. This information forms the basis for “vignettes” (short descriptions) for those products that are already in an “advanced” stage.
4. Subsequently, the products are monitored with regard to the status of the clinical studies up to approval and finally evaluated for their benefit and harm.

All work steps are conducted in close international (European) cooperation.

- Version 1 (V1, April 2020): inventory + vignettes for most advanced
- Version 2+: monthly monitoring and updates

Ongoing trials are reported in V1, April 2020 - V3, June 2020 of this Document and in the living documents - EUnet HTA (Cov1d-19 Rolling Collaborative Reviews: https://eunethta.eu/rrcr01-rrcrxx/).

From V4 July, 2020 of this HSS/ Horizon Scanning Document, only completed, terminated, withdrawn and suspended interventional clinical trials from ClinicalTrials.gov and EUDRACT registers are reported. From Version 8 November, 2020 only terminated, withdrawn and suspended interventional clinical trials are reported.

From V5, August 2020 of this HSS/ Horizon Scanning Document only the best available evidence will be presented in.
Table 1.2-1: International Sources

<table>
<thead>
<tr>
<th>Primary sources</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO</td>
<td>https://www.who.int/teams/blueprint/covid19</td>
</tr>
<tr>
<td>Drugs:</td>
<td>https://www.who.int/blueprint/priority-diseases/key-action/</td>
</tr>
<tr>
<td>Vaccines:</td>
<td>Table_of_therapeutics_Appendix_17022020.pdf?ua=1</td>
</tr>
<tr>
<td></td>
<td>https://www.who.int/who-documents-detail/covid-19-candidate-treatments</td>
</tr>
<tr>
<td></td>
<td>https://www.who.int/who-documents-detail/draft-landscape-of-covid-19-</td>
</tr>
<tr>
<td></td>
<td>candidate-vaccines</td>
</tr>
<tr>
<td>Danish Medicine Agency</td>
<td>http://laegemiddelstyrelsen.dk/da/nyheder/temaer/ny-coronavirus-covid-</td>
</tr>
<tr>
<td>Drugs:</td>
<td>19/~/media/5883D25935DF43A3BFA823E2E4604AC36.asx</td>
</tr>
<tr>
<td>Vaccines:</td>
<td>http://laegemiddelstyrelsen.dk/da/nyheder/temaer/ny-coronavirus-covid-</td>
</tr>
<tr>
<td></td>
<td>19/~/media/3A8B7F16D0924DD8B157B8E17BFED49.axh</td>
</tr>
<tr>
<td>Drugs:</td>
<td>Table 5+6,</td>
</tr>
<tr>
<td>Vaccines:</td>
<td>Table 3+4</td>
</tr>
<tr>
<td>SPS HS-report (UK)</td>
<td>unpublished</td>
</tr>
<tr>
<td>Secondary sources</td>
<td></td>
</tr>
<tr>
<td>VFA/ Verband Forschender Arzneimittelhersteller</td>
<td>http://www.vfa.de/de/arzneimittel-forschung/woranwir-</td>
</tr>
<tr>
<td>Drugs:</td>
<td>forschend/therapeutische-medikamente-gegen-die-coronavirusinfection-c</td>
</tr>
<tr>
<td>Vaccines:</td>
<td>covid-19/</td>
</tr>
<tr>
<td></td>
<td>https://www.vfa.de/de/arzneimittel-forschung/woranwir-forschern/implstoße-</td>
</tr>
<tr>
<td></td>
<td>zum-schutz-vor-coronavirus-2019-ncov</td>
</tr>
<tr>
<td>FDA/US Food and Drug Administration</td>
<td>https://www.fda.gov/emergency-preparedness-and-response/counterterrorism-</td>
</tr>
<tr>
<td>Trial Registries</td>
<td></td>
</tr>
<tr>
<td>US National Library of Medicine</td>
<td></td>
</tr>
<tr>
<td>European Union Drug Regulating Authorities Clinical Trials Database</td>
<td></td>
</tr>
<tr>
<td>WHO International Clinical Trials Registry Platform</td>
<td></td>
</tr>
<tr>
<td>TrialsTracker</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://clinicaltrials.gov/</td>
</tr>
<tr>
<td></td>
<td>https://eudract.ema.europa.eu/</td>
</tr>
<tr>
<td></td>
<td>https://www.who.int/ictrp/en/</td>
</tr>
<tr>
<td>Up-to-date information on clinical trials and literature searching resources relating to COVID-19</td>
<td></td>
</tr>
<tr>
<td>Cochrane COVID-19 Study Register 21/04/20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>https://covid-19.cochrane.org/</td>
</tr>
<tr>
<td>Living mapping of research and a living systematic review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>https://covid-nma.com/</td>
</tr>
<tr>
<td></td>
<td>https://covid-nma.com/dataviz/</td>
</tr>
<tr>
<td>meta/Evidence – COVID-19</td>
<td></td>
</tr>
<tr>
<td>CORDITE (Corona Drug Interactions database)</td>
<td>http://cordite.mathematik.uni-marburg.de/#/</td>
</tr>
<tr>
<td>Global Coronavirus COVID-19 Clinical Trial Tracker</td>
<td>http://www.covid-trials.org/</td>
</tr>
<tr>
<td>UK NIHR Innovation Observatory</td>
<td></td>
</tr>
<tr>
<td>NIHR COVID-19 Studies</td>
<td>https://www.nihr.ac.uk/covid-studies/</td>
</tr>
<tr>
<td></td>
<td>research-on-novel-coronavirus-2019-ncov</td>
</tr>
<tr>
<td>Centre of Evidence Based Dermatology (CEBD) - Coronavirus Dermatology Online Resource</td>
<td>http://www.nottingham.ac.uk/research/groups/cebd/resources/Coronavirus-resource/Coronavirushouse</td>
</tr>
</tbody>
</table>
Several organisations and international teams of researchers are providing up-to-date information through a living listing of interventional clinical trials in Covid-19/2019-nCoV and literature resources (Table 1.2-1) [2-4]. A short description of two of such databases is presented below.

Boutron et al., 2020 [3] are performing a living mapping of ongoing randomized trials, followed by living systematic reviews with pairwise meta-analyses and when possible, network meta-analyses focusing on two main questions: the effectiveness of preventive interventions for COVID-19 and the effectiveness of treatment interventions for COVID-19 (Figure 1.2-1).

Figure 1.2-1: A living mapping of ongoing randomized trials, living systematic reviews with pairwise meta-analyses and network meta-analyses
Thorlund et al., 2020 [4] developed a COVID-19 clinical trials registry to collate all trials related to COVID-19: Global Coronavirus COVID-19 Clinical Trial Tracker. Data is pulled from the International Clinical Trials Registry Platform including those from the Chinese Clinical Trial Registry, ClinicalTrials.gov, Clinical Research Information Service - Republic of Korea, EU Clinical Trials Register, ISRCTN, Iranian Registry of Clinical Trials, Japan Primary Registries Network, and German Clinical Trials Register (Figure 1.2-2). They also use content aggregating services, such as LitCovid, to ensure that their data acquisition strategy is complete [5].

Figure 1.2-2: Global Coronavirus COVID-19 Clinical Trial Tracker - a real-time dashboard of clinical trials for COVID-19

1.3 Selection of Products for “Vignettes”

The following products have been selected for further investigation (searches in registry databases and description as “vignettes”) for the following reasons:

- most advanced in clinical research in humans
- most often discussed in clinical journals as potential candidates

Decision to stop further investigation will be based on modified EUnetHTA stopping rules, https://eunethta.eu/covid-19/treatment/: 1) the compound has a positive marketing authorization decision or 2) no clinical benefit ≥ 2 RCTs OR treatment arm in platform trials (e.g., RECOVERY) with negative efficacy and/or safety results in the indication and population under review (phase III, of high or moderate quality/high or moderate certainty of evidence, well powered) OR ≥ 1 RCT with negative efficacy and/or safety results in the indication and population under review (phase III, of high or moderate quality/high or moderate certainty of evidence, well powered) AND stopped enrollment of participants to the treatment arm of interest in a platform trial (e.g., RECOVERY) because no evidence of beneficial effects.

The full inventory (list) can be found in Part 2 - Appendix A-1: vaccines, A-2, therapeutics, A3-EudraCT registry studies.
From January 2021 (v10) only vaccines for which the European Commission (EC) concluded contracts or exploratory talks with their manufacturers, to build a diversified portfolio of COVID-19 vaccines for EU citizens, will be presented in detail.

From April 2021 (V13) focus will be also on COVID-19 vaccines which clinical trials are conducted in children, on vaccines effectiveness related to SARS-CoV-2 new variants as well as on COVID-19 intranasal vaccines in development.
2 Results: Vaccines

As of June 13, 2021, the European Commission (EC) has given the conditional marketing authorisation for the vaccines developed by BioNTech and Pfizer – Comirnaty® (vaccine efficacy 94.6%) on 21 December 2020, and Moderna – COVID-19 Vaccine Moderna (vaccine efficacy 94.1%) on 6 January 2021, following EMA positive assessment of its safety and efficacy.

On 29 January 2021, the EC has given the conditional marketing authorisation for the vaccine developed by AstraZeneca – now Vaxzevria (previously COVID-19 Vaccine AstraZeneca) (vaccine efficacy around 60%).

On 11 March 2021, the European Commission (EC) has given the conditional marketing authorisation for the COVID-19 Vaccine Janssen (vaccine efficacy 67%) developed by Janssen Pharmaceutica NV/Johnson & Johnson, following evaluations by EMA.

On February 03 2021 CHMP has started a rolling review of NVX-CoV2373, a COVID-19 vaccine being developed by Novavax CZ AS (a subsidiary of Novavax, Inc.), and on February 12th a rolling review of CVaCoV, a COVID-19 vaccine being developed by CureVac AG [6, 7]. On March 4, 2021 CHMP has started a rolling review of Sputnik V COVID-19 vaccine developed by Russia’s Gamaleya National Centre of Epidemiology and Microbiology [8].

On May 4, 2021, CHMP has started a rolling review of COVID-19 Vaccine (Vero Cell) Inactivated, developed by Sinovac Life Sciences Co., Ltd [9].

As of May 14, 2021, the EC concluded contracts with different vaccine manufacturers to build a diversified portfolio of COVID-19 vaccines for EU citizens: with AstraZeneca (400 million doses), Sanofi-GSK (300 million doses), Johnson and Johnson/Janssen Pharmaceuticals (400 million doses), BioNTech-Pfizer (600 million doses), CureVac (405 million doses) and Moderna (460 million doses). The EC has concluded exploratory talks with the pharmaceutical company Novavax with a view to purchasing up to 200 million doses and with Valneva with a view to purchase up to 60 million doses, https://ec.europa.eu/commission/presscorner/detail/en/QANDA_20_2467.

As of June 13, 2021, out of these eight COVID-19 candidate vaccines contracted or exploratory talks has concluded for EU, three are investigate in phase 4, and five are investigated in phase 3 RCTs:

1. Moderna Therapeutics/NIAID (RNA LNP-encapsulated mRNA vaccine encoding S protein);
2. University of Oxford/AstraZeneca (Non-Replicating Viral Vector ChAdOx1 (AZD1222) vaccine);
3. BioNTech/Fosun Pharma/Pfizer (RNA 3 LNP-mRNAs vaccine); all in phase 4 RCTs;
4. Janssen Pharmaceuticals/Johnson & Johnson (Non-Replicating Viral Vector Ad26CovS1 vaccine);
5. Novavax (Protein Subunit, VLP-recombinant protein nanoparticle vaccine + Matrix M);
6. CureVac (RNA based vaccine, CVnCov2) vaccine,
7. Sanofi-GSK (Protein Subunit, with adjuvant 1 vaccine)
8. Valneva (inactive virus), in phase 3 RCTs.

Out of these 8 coronavirus vaccines, the following articles were published for 7 vaccines, with results related to early phases vaccine trials (phase 1, 1/2 or phase 2) or phase 2/3 and phase 3 trials:

1. Three on Moderna Therapeutics/NIAID vaccine: a preliminary report with the results from the phase 1 study (NCT04283461) and
2. The results from the expanded phase 1 study (NCT04283461) in older adults and
3. The results from phase 3 RCT (NCT04470427);
4. Four on Novavax vaccine: the results from the phase 1/2 RCT (NCT04368988)
5. The results from phase 2 component of 1/2 RCT (NCT04368988); and
6. The preliminary results from phase 2a/b in South Africa (NCT04533399) and
7. Results from phase 3 RCT in UK (EudraCT 2020-004123-16)
8. Eight on Oxford/Astra Zeneca vaccine: a preliminary report with the results from the phase 1/2 single-blind, RCT (ISRCTN 15281137/NCT04324606/EudraCT 2020-001072-15)
9. A report from the same RCT, on subgroups of volunteers who were subsequently allocated to receive a homologous full-dose or half-dose ChAdOx1 booster vaccine 56 d following primary vaccination
10. Pooled interim analysis phase 2/3 trials (ISRCTN89951424, NCT04324606, NCT04400838, and NCT04444674) and
11. Pooled primary analysis phase 2/3 trials (ISRCTN89951424, NCT04324606, NCT04400838, and NCT04444674)
12. Phase 2 component of phase 2/3 trial COV002 (ISRCTN90906759, NCT04400838)
13. Phase 3 component of phase 2/3 trials (ISRCTN89951424, NCT04324606, NCT04400838, and NCT04444674)
14. Phase 3 trial in South Africa (NCT04444674) and
15. Exploratory analysis of a RCT (NCT04400838)
16. Five on BioNTech/Fosun Pharma/Pfizer vaccine: Three with results from two phase 1/2 trials on BNT162b1 vaccine, one in US (NCT04368728/EudraCT 2020-001038-36) and
17. One in Germany (NCT04380701, EudraCT 2020-001038-36) as well as
18. Additional safety and immunogenicity results from the US phase 1 trial (NCT04368728/EudraCT 2020-001038-36) and
19. One pivotal RCT efficacy trial on BNT162b2 (NCT04368728) and
20. One RCT in adolescents (NCT04368728)
21. Two on Janssen Pharmaceutica/Johnson & Johnson vaccine: interim results of a phase 2b trial (NCT04436276) and
22. Phase 3 RCT (NCT04505722)
23. One on CureVac: preliminary results of phase 1 trial (NCT04449276) and
24. Publikationen zu Impfstudien
24. One on Sanofi and GSK: interim results of phase ½ trial (NCT04537208) [31].

Regulatory Guidelines and position paper:

On 09/07/2020, Medicines Regulatory Authorities published the report related to phase 3 COVID-19 vaccine trials [32]. They stressed the need for large phase 3 clinical trials that enroll many thousands of people, including those with underlying medical conditions, to generate relevant data for the key target populations. Broad agreement was achieved that clinical studies should be designed with stringent success criteria that would allow a convincing demonstration of the efficacy of COVID-19 vaccines.

On April 17, 2021 EMA’s safety committee (PRAC) has concluded that unusual blood clots with low blood platelets should be listed as very rare side effects of Vaxzevria (formerly COVID-19 Vaccine AstraZeneca). EMA is reminding healthcare professionals and people receiving the vaccine to remain aware of the possibility of very rare cases of blood clots combined with low levels of blood platelets occurring within 2 weeks of vaccination. So far, most of the cases reported have occurred in women under 60 years of age within 2 weeks of vaccination. Based on the currently available evidence, specific risk factors have not been confirmed. One plausible explanation for the combination of blood clots and low blood platelets is an immune response, leading to a condition similar to one seen sometimes in patients treated with heparin (heparin-induced thrombocytopenia, HIT). The PRAC has requested new studies and amendments to ongoing ones to provide more information and will take any further actions necessary, https://www.eea.europa.eu/en/news/astrazenecas-covid-19-vaccines-e-ma-links-possible-link-very-rare-cases-unusual-blood-clots-low-blood.

Following the assessment of a safety signal regarding cases of anaphylaxis (severe allergic reactions) with COVID-19 Vaccine AstraZeneca, PRAC has recommended an update to the product information to include anaphylaxis and hypersensitivity (allergic reactions) as side effects in section 4.8, with an unknown frequency, and to update the existing warning to reflect that cases of anaphylaxis have been reported. The update is based on a review of 41 reports of possible anaphylaxis seen among around 5 million vaccinations in the United Kingdom. After careful review of the data, PRAC considered that a link to the vaccine was likely in at least some of these cases, https://www.eea.europa.eu/en/news/meeting-highlights-pharmacovigilance-risk-assessment-committee-prac-8-11-march-2021.

On April 19, 2021 PRAC has started a review of a safety signal to assess reports of capillary leak syndrome in people who were vaccinated with Vaxzevria (previously COVID-19 Vaccine AstraZeneca). On June 11, 2021 EMA stated that EMA’s safety committee (PRAC) has concluded that people who have previously had capillary leak syndrome must not be vaccinated with Vaxzevria. The Committee also concluded that capillary leak syndrome should be added to the product information as a new side effect of the vaccine, together with a warning to raise awareness among healthcare professionals and patients of this risk [35].

Anaphylaxis

März 2021: EMA (PRAC) beginnt Untersuchung zu Nebenwirkungen von AstraZeneca

Thromboembolien

Kapillarlecksyndrom

neuer Name: Vaxzevria (AstraZeneca)
Results: Vaccines

As stated in May 2021, PRAC is analysing data provided by the marketing authorisation holder of Vaxzevria on cases of Guillain-Barre syndrome (GBS) reported following vaccination. GBS is an immune system disorder that causes nerve inflammation and can result in pain, numbness, muscle weakness and difficulty walking. GBS was identified during the marketing authorisation process as a possible adverse event requiring specific safety monitoring activities. PRAC has requested the marketing authorisation holder to provide further detailed data, including an analysis of all the reported cases in the context of the next pandemic summary safety report. PRAC will continue its review and will communicate further when new information becomes available, https://www.ema.europa.eu/en/news/meeting-highlights-pharmacovigilance-committee-prac-3-6-may-2021.

PRAC has started a review of a safety signal to assess reports of immune thrombocytopenia in patients who received any of the three COVID-19 vaccines: Comirnaty, COVID-19 Vaccine AstraZeneca and COVID-19 Vaccine Moderna.

PRAC is assessing reports of myocarditis with Comirnaty and COVID-19 Vaccine Moderna. On June 11, 2021 EMA stated that EMA’s safety committee (PRAC) is continuing its assessment of reports of myocarditis (inflammation of the heart muscle) and pericarditis (inflammation of the membrane around the heart) in a small number of people following vaccination with all COVID-19 vaccines with conditional marketing authorisation in the EU. For Comirnaty and COVID-19 Vaccine Moderna the PRAC is reviewing cases of myocarditis and pericarditis in the context of a safety signal, under an accelerated timetable (aff expected in July). For Vaxzevria and COVID-19 Vaccine Janssen, the PRAC is reviewing the cases in the context of the vaccines’ Monthly Summary Safety Reports, also referred to as pandemic summary safety reports, which are compiled by the marketing authorisation holders to support timely and continuous benefit-risk evaluations of COVID-19 vaccines used during the pandemic [36].

On April 20, 2021 PRAC concluded that a warning about unusual blood clots with low blood platelets should be added in the product information. On May 7, 2021 PRAC concluded that product information will also include advice that patients who are diagnosed with thrombocytopenia within three weeks of vaccination should be actively investigated for signs of thrombosis. Patients who present with thromboembolic within three weeks of vaccination should be evaluated for thrombocytopenia. Thrombosis with thrombocytopenia

PRAC Untersuchung von Vaxzevria (AstraZeneca)
Guillain-Barre syndrome (GBS)

PRAC Untersuchung von BioNTech, AstraZeneca und Moderna zu Thrombozytopenie

PRAC Untersuchung von BioNTech: lokale Schwellungen

PRAC Untersuchung von Moderna und Comirnaty

Myokarditis, Perikarditis

PRAC Untersuchung von Johnson & Johnson

Thromboembolien

Risiko: Thromboembolien innerhalb von 3 Wochen nach Impfung
syndrome will be added as an ‘important identified risk’ in the risk management plan for the vaccine. Furthermore, the marketing authorisation holder will provide a plan to further study the possible underlying mechanisms for these very rare events, http://www.eea.europa.eu/en/news/meeting-highlights-phar-micovi-giance-rusk-assessment-committee-prac-3-6-may-2021.

On February 10, 2021 EMA stated that it is developing guidance for manufacturers planning changes to the existing COVID-19 vaccines to tackle the new virus variants. In order to consider options for additional testing and development of vaccines that are effective against new virus mutations, the Agency has requested all vaccine developers to investigate if their vaccine can offer protection against any new variants, e.g., those identified in the United Kingdom variant called B.1.1.7, South Africa - B.1.351 and Brazil - variant called P.1, and submit relevant data. EMA will shortly publish a reflection paper that will set out the data and studies needed to support adaptations of the existing vaccines to current or future mutations of SARS-CoV-2 in the European Union (EU). There are concerns that some of these mutations could impact to different degrees the ability of the vaccines to protect against infection and disease. A reduction in protection from mild disease would not necessarily translate into a reduction in protection from serious forms of the disease and its complications, for which Agency need to collect more evidence [37].

Vaccine and SARS-CoV-2 variants (in June 2021 new names given by WHO)

So far, studies suggest that effectiveness may be reduced against some SARS-CoV-2 variants and more data are needed [15, 24, 38-51] [16, 52]. Current data related to clinical effectiveness and in vitro neutralisation, on Alpha (B.1.1.7), Beta (B.1.351) and Gamma (P.1) SARS-CoV-2 variants can be found in Table 2-2. Updated vaccines will be necessary to eliminate the virus. Recently, in addition to B.1.1.7, B.1.351 and P.1, two more SARS-CoV-2 variants, B.1.427 and B.1.429, which were first detected in California, have been shown to be approximately 20% more transmissible than prevailing variants and have been classified by the CDC as variants of concern. Currently in EU, variants of concern are B.1.1.7, B.1.351 and P.1 and Delta (B.1.617.2).

First reported in India in December 2020, SARS-CoV-2 lineages Kappa (B.1.617.1), Delta (B.1.617.2) and B.1.617.3 have been increasingly detected in other countries. In the EU/EEA there are indications that the frequency of detection of both lineages B.1.617.1 and B.1.617.2 is increasing. Currently described lineages B.1.617.1, B.1.617.2 and B.1.617.3 have distinct mutation profiles and warrant individual assessment. Given the still very limited available data with respect to their transmissibility, disease severity and immune escape potential relative to other co-circulating SARS-CoV-2 variants in the EU/EEA, the full impact of these lineages on public health is not yet possible to assess. At this time, ECDC maintains its assessment of

Anfang April 2021:
FDA: Pausierung von Impfung mit Johnson & Johnson (J&J)

Ende April: FDA Fortsetzung von J&J

EMA Guidance für Vazzinehersteller bez.
Veränderungen wegen Mutanten

B.1.1.7 (UK)
B.1.351 (SA)
P.1 (BR)

Impfwirksamkeit bei Mutationen in Tabelle 2-2

weitere:
B.1.617.1
B.1.617.2
B.1.617.3 (Indien)
B.1.617.1, and B.1.617.3 as variants of interest and will continue to actively monitor the situation [53].

Vaccine in development in children

Clinical trials are currently under way to test the Pfizer, Moderna, Oxford-Astra Zeneca, Janssen/Johnson & Johnson and Sinovac vaccines in children [54-57]. Details can be found in Table 2-3.

On May 3, 2021, EMA has started evaluating an application to extend the use of the COVID-19 vaccine Comirnaty to include young people aged 12 to 15 [59]. On May 10, 2021, FDA authorised Pfizer/BionTech COVID-19 vaccine for emergency use in adolescents 12-15 years old [60].

On May 28, 2021, EMA’s CHMP recommended granting an extension of indication for the COVID-19 vaccine Comirnaty to include children aged 12 to 15 [61]. On June 08, 2021, EMA has started evaluating an application to extend the use of the COVID-19 Vaccine Moderna to include young people aged 12 to 17 [62].

Intranasal vaccines in development

As of June 08, 2021, seven COVID-19 intranasal vaccines in development were found. Nasal delivery is easier for administration, without needles and can be self-administered. Intranasal vaccines could boost immune defenses in mucosa. As an example, Oxford is launching a phase 1 trial of a nasal spray COVID-19 vaccine, including 30 volunteers aged 18-40. The spray will use the same ChAdOx1 nCoV-19 compound as the Astra Zeneca shot. Details can be found in Table 2-4.
Table 2-1: Vaccines contracted or exploratory talks have concluded for EU, in the R&D pipeline (Phase 1 - Phase 4 clinical trials, not preclinical stages)

<table>
<thead>
<tr>
<th>Developers</th>
<th>Vaccine/Vaccine type</th>
<th>Number of doses</th>
<th>Study phase</th>
<th>Storage conditions</th>
<th>Efficacy against severe COVID-19</th>
<th>Overall efficacy</th>
<th>EC (EU) Current approval or EMA “rolling review”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderna + National Institute of Allergy and Infectious Diseases (NIAID)</td>
<td>COVID-19 Vaccine Moderna (mRNA-1273) / mRNA</td>
<td>2 IM</td>
<td>Phase 4</td>
<td>-25°C to -15°C; 2-8°C for 30 d; room temperature ≤ 12 h</td>
<td>100% 14 d after 2nd dose</td>
<td>92.1% after 1st dose; 94.1% 14 d after 2nd dose</td>
<td>Conditional marketing authorisation</td>
</tr>
<tr>
<td>AstraZeneca + University of Oxford</td>
<td>COVID-19 Vaccine AstraZeneca (ChAdOx1-S - (AZD1222) / Viral vector</td>
<td>2 IM</td>
<td>Phase 4</td>
<td>2-8°C for 6 mo</td>
<td>100% 21 d after 1st dose</td>
<td>64.1% after 1st dose; 70.4% 14 d after 2nd dose</td>
<td>Conditional marketing authorisation</td>
</tr>
<tr>
<td>BioNTech + Pfizer</td>
<td>Comirnaty (BNT162b2) / mRNA</td>
<td>2 IM</td>
<td>Phase 4</td>
<td>-80°C to -60°C; 2-8°C for 5 d; room temperature ≤ 2 h</td>
<td>88.9% after 1st dose</td>
<td>52% after 1st dose; 94.6% 7 d after 2nd dose</td>
<td>Conditional marketing authorisation</td>
</tr>
<tr>
<td>Janssen Pharmaceutical/Johnson & Johnson</td>
<td>COVID-19 Vaccine Janssen (Ad26.COV2.S) / Viral vector</td>
<td>1 IM</td>
<td>Phase 3</td>
<td>-25°C to -15°C; 2-8°C for 3 mo</td>
<td>85% after 28 d; 100% after 49 d</td>
<td>72% in US; 66% in Latin America; 57% in South Africa (at 28 d)</td>
<td>Conditional marketing authorisation</td>
</tr>
<tr>
<td>CureVac AG</td>
<td>CVnCoV / mRNA</td>
<td>2 IM</td>
<td>Phase 3</td>
<td>2-8°C for 3 mo; room temperature for 24 h</td>
<td>Unknown</td>
<td>Phase 3 ongoing</td>
<td>EMA “rolling review”</td>
</tr>
<tr>
<td>Sanofi Pasteur + GSK</td>
<td>VAT00002; SARS-CoV-2 vaccine formulation 1 with adjuvant 1 (5 protein (baculovirus production) / Protein subunit</td>
<td>2 IM</td>
<td>Phase 3</td>
<td>2-8°C</td>
<td>N.A- Phase 2b ongoing</td>
<td>N.A- Phase 2b ongoing</td>
<td>N.A - Phase 2b ongoing</td>
</tr>
<tr>
<td>Novavax</td>
<td>NVX-CoV2373 / Protein subunit</td>
<td>2 IM</td>
<td>Phase 3</td>
<td>2-8°C for 6 mo</td>
<td>100%</td>
<td>89.3% in UK after 2nd dose; 60% in South Africa</td>
<td>EMA “rolling review”</td>
</tr>
<tr>
<td>Valneva</td>
<td>VLA2001 / Inactivated virus</td>
<td>2 IM</td>
<td>Phase 3</td>
<td>2-8°C</td>
<td>N.A – Phase 1 / 2 ongoing</td>
<td>N.A – Phase 1 / 2 ongoing</td>
<td>N.A - Phase 1 / 2 ongoing</td>
</tr>
</tbody>
</table>
Table 2-2: SARS-CoV-2 variants of concern in EU and vaccines contracted or exploratory talks have concluded for EU, and some vaccines not contracted nor exploratory talks have concluded for EU: clinical effectiveness and in-vitro neutralisation

<table>
<thead>
<tr>
<th>Developers</th>
<th>Vaccine / Vaccine type</th>
<th>Clinical Efficacy against Alpha (B.1.1.7.) (UK) / Neutralisation</th>
<th>Clinical Efficacy against Beta (B.1.351) (South Africa) / Neutralisation</th>
<th>Clinical Efficacy against Gamma (P.1) (Brazil) / Neutralisation</th>
<th>Clinical Efficacy against Delta (B.1.617.2) (India) / Neutralisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderna + National Institute of Allergy and Infectious Diseases (NIAID)</td>
<td>COVID-19 Vaccine Moderna(mRNA -1273) / mRNA</td>
<td>Not yet available Decrease by 1.8x</td>
<td>Not yet available Decrease by ≤8.6x</td>
<td>Not yet available</td>
<td>Not yet available</td>
</tr>
<tr>
<td>AstraZeneca + University of Oxford</td>
<td>COVID-19 Vaccine AstraZeneca ChAdOx1-S - (AZD1222) / Viral vector (Nonreplicating)</td>
<td>70.4% against symptomatic COVID-19 Decrease by 9x</td>
<td>10.4% against symptomatic COVID-19 Decrease by ≤86x to complete immune escape</td>
<td>Not yet available Decrease by 2.9x</td>
<td>Real-world data: 60% effective at two weeks after the second dose; 33% effective against symptomatic disease three weeks after the first dose</td>
</tr>
<tr>
<td>BioNTech + Pfizer</td>
<td>Comirnaty(BNT162b2) / mRNA</td>
<td>Real-world data: 72% (95% CI 58-86) 21 days after first dose and 86% (95% CI 76-97) seven days after two doses Decrease by 2x</td>
<td>100% in South Africa Decrease by ≤5.3x to 10.3x</td>
<td>Not yet available Decrease by 2.6x, 6.7x to 14x</td>
<td>Real-world data: 88% effective, two weeks after the second dose; 33% effective against symptomatic disease three weeks after the first dose</td>
</tr>
<tr>
<td>Janssen Pharmaceutical/Johnson&Johnson</td>
<td>COVID-19 Vaccine Janssen (Ad26.COV2.S) / Viral vector (Non-replicating)</td>
<td>Not yet available</td>
<td>57% against moderate to severe COVID-19; 85% against severe COVID-19 and hospitalisation Not yet available</td>
<td>68.1% against moderate to severe disease Not yet available</td>
<td>Not yet available</td>
</tr>
<tr>
<td>CureVac AG</td>
<td>CVnCoV / mRNA</td>
<td>Not yet available</td>
<td>Not yet available (Strong results variant when tested on mice; CureVac would expand a trial in Europe and Latin America to analyse the vaccine's efficacy against select variants)</td>
<td>Not yet available</td>
<td>Not yet available</td>
</tr>
<tr>
<td>Sanofi Pasteur + GSK</td>
<td>VAT00002; SARS-CoV-2 vaccine formulation 1 with adjuvant 1 (S protein (baculovirus production) / Protein subunit</td>
<td>Not yet available</td>
<td>Not yet available</td>
<td>Not yet available</td>
<td>Not yet available</td>
</tr>
</tbody>
</table>
| Developers | Vaccine / Vaccine type | NCT 2021-02-20 | Phase 1 trials in 6,750 children ages 6 months through 11 years in U.S. and Canada
Two parts:
1. **Part 1**: open label, dose escalation, age de-escalation study. 2 yo – up to 12 yo, each participant may receive either 50 μg or 100 μg dose of the vaccine.
6 mo – up to 2 yo, each participant may receive either 25 μg, 50 μg, or 100 μg dose.
2. **Part 2**: randomised, observer-blind, placebo-controlled expansion study based on the preliminary evaluation of the Part 1 results. The participants will receive two doses of the vaccine 28 days apart. To evaluate the medicine's safety, tolerability, reactogenicity and effectiveness, the company will observe the participants for 12 months after the second jab.

NCT 04649151 (TeenCOVE)
Phase 2/3 RCT to evaluate the safety, reactogenicity, and effectiveness of mRNA-1273 SARS-CoV 2 vaccine in 3000 healthy adolescents 12 to <18 years of age in US. See Press Release from 15 May 2021, on results related to primary endpoint below.
On June 08, 2021, EMA has started evaluating an application to extend the use of the COVID-19 Vaccine Moderna to include young people aged 12 to 17.

NCT 04368728 (Phase 2/3 RCT in 2200 volunteers ages 12 to 15)
On March 31, 2021 announced adolescent trials have shown efficacy of 100% in protecting adolescents ages 12-15, with no significant safety concerns. About 2,260 adolescents ages 12-15 years participated in the trial, with roughly half receiving the vaccine and half receiving a placebo. There were 18 cases of COVID-19 reported, all within the placebo group. One month after a second dose, the vaccine elicited SARS-CoV-2-neutralizing antibody geometric mean titers of 1,293.5 in a
Has begun in April 2021 testing its Covid-19 vaccine in 1700 adolescents aged 12; Initially will be tested in a small number of adolescents aged 16-17 years (following the review of initial data in this phase 2a trial, the study will be expanded to a larger group of younger adolescents in a stepwise approach).
Currently enrolling participants in Spain and the United Kingdom; enrollment will commence shortly in the United States, the Netherlands and Canada, with Brazil and Argentina to follow
| CureVac AG | CVnCoV / mRNA | Not available |
| Sanofi Pasteur + GSK | VAT00002; SARS-CoV-2 vaccine formulation 1 with adjuvant 1 (S protein (baculovirus production)) / Protein subunit | Not available |
| Novavax | NVX-CoV2373 / Protein subunit | Pediatric and adolescent arms of the trials expected to initiate later in the second quarter 2021
| Valneva | VLA2001 / Inactivated virus | Not available |
| Sinovac Biotech | CoronaVac; SARS-CoV-2 vaccine (inactivated) / Inactivated virus | RCT on 500 children in China ages 3 to 17: preliminary results from phase 1 trials announced safe and could induce immune responses among children and adolescents. The lower dose of the vaccine could induce favourable antibody responses in children aged three to 11 years while the medium dose worked well for those aged 12 to 17 years.
Results: Vaccines

Table 2-4: Intranasal vaccine in development

<table>
<thead>
<tr>
<th>Developers</th>
<th>Vaccine platform</th>
<th>Vaccine type</th>
<th>No of doses</th>
<th>Study Phase</th>
<th>Registry number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AstraZeneca + University of Oxford</td>
<td>Viral vector (Non-replicating)</td>
<td>ChAdOx1-S- (AZD1222) (Covishield)</td>
<td>1-2</td>
<td>1</td>
<td>NCT04816019</td>
</tr>
<tr>
<td>University of Hong Kong, Xiamen University and Beijing Wantai Biological Pharmacy</td>
<td>Viral vector (Replicating)</td>
<td>DeNS1-2019-nCoV-RBD-OPT1 (Intranasal flu-based-RBD)</td>
<td>2</td>
<td>2</td>
<td>ChiCTR2000039715</td>
</tr>
<tr>
<td>Codagenix/Serum Institute of India</td>
<td>Live attenuated virus</td>
<td>COV1VAC</td>
<td>1-2</td>
<td>1</td>
<td>NCT04619628</td>
</tr>
<tr>
<td>Center for Genetic Engineering and Biotechnology (CIGB)</td>
<td>Protein subunit</td>
<td>CIGB-669 (RBD+AgnHB)</td>
<td>3</td>
<td>1/2</td>
<td>RPCEC00000345</td>
</tr>
<tr>
<td>Altimune, Inc.</td>
<td>Viral vector (Non-replicating)</td>
<td>AdCOVID. Adenovirus-based platform expresses the receptor-binding domain (RBD) of the Sars-Cov-2 spike protein</td>
<td>1-2</td>
<td>1</td>
<td>NCT04679909</td>
</tr>
<tr>
<td>Bharat Biotech International Limited</td>
<td>Viral vector (Non-replicating)</td>
<td>BBV154, Adenoviral vector COVID-19 vaccine</td>
<td>1</td>
<td>1</td>
<td>NCT04751682</td>
</tr>
<tr>
<td>Meissa Vaccines, Inc.</td>
<td>Live attenuated virus</td>
<td>MV-014-212, a live attenuated vaccine that expresses the spike (S) protein of SARS-CoV-2</td>
<td>3</td>
<td>1</td>
<td>NCT04798001</td>
</tr>
</tbody>
</table>

2.1 Moderna Therapeutics—US National Institute of Allergy

The reader is referred to the earlier version (V13_April) for more details on the Moderna vaccine (COVID-19 Vaccine Moderna).

Current data related to clinical effectiveness and in vitro neutralisation, on Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) SARS-CoV-2 variants can be found in Table 2-2.

Moderna has announced that it is developing two new approaches to emerging variants of covid-19 after studies showed that its vaccine had a reduced level of neutralising titres to the South African variant, suggesting that immunity might wane. Although the studies showed that Moderna’s current vaccine was effective against both the UK and South African variants, a sixfold reduction was seen in neutralising titre levels to the South African variant. In the first approach Moderna said that it would see whether a third “booster dose” of the current mRNA-1273 vaccine added to the approved two dose regimen would further increase neutralising titres against the emerging variants. In a second approach the company said that it had developed a booster vaccine candidate called mRNA-1273.351 against the emerging South African variant. It said that it was beginning phase I studies in the US to see whether this modified vaccine with variant specific proteins would increase the immunological effect [64].

Data related to development of vaccine in children can be found in Table 2-3.

On May 25, 2021 Moderna announced that TeenCove phase 2/3 study of its COVID-19 vaccine (mRNA-1273) in adolescents has met its primary immunogenicity endpoint, successfully bridging immune responses to the adult vaccination. In the study, no cases of COVID-19 were observed in participants who had received two doses of the Moderna COVID-19 vaccine using the primary definition. In addition, a vaccine efficacy of 93% in seronegative participants was observed starting 14 days after the first dose using the secondary CDC case definition of COVID-19, which tested for milder disease. This study, known as the TeenCOVE study, enrolled more than 3,700 participants ages 12 to less than 18 years in the U.S. The Company plans to submit these data to regulators globally in early June. No significant safety concerns have been identified to date. The majority of adverse events were mild or moderate in severity. The most common solicited local adverse event was injection site pain. The most common solicited systemic adverse events after the second dose of mRNA-1273 were headache, fatigue, myalgia and chills [65].

2.2 University of Oxford/ Astra Zeneca

The reader is referred to the earlier version (V13_April) for more details on the Vaxzevria, previously COVID-19 Vaccine AstraZeneca.
Madhi et al. 2021 [23] published results from RCT (NCT04444674) in South Africa. Participants 18 to less than 65 years of age were assigned in a 1:1 ratio to receive two doses of vaccine containing 5×10¹⁰ viral particles or placebo (0.9% sodium chloride solution) 21 to 35 days apart. Serum samples obtained from 25 participants after the second dose were tested by pseudovirus and live-virus neutralization assays against the original D614G virus and the B.1.351 variant. The primary end points were safety and efficacy of the vaccine against laboratory-confirmed symptomatic coronavirus 2019 illness (Covid-19) more than 14 days after the second dose. Both the pseudovirus and the live-virus neutralization assays showed greater resistance to the B.1.351 variant in serum samples obtained from vaccine recipients than in samples from placebo recipients. In the primary end-point analysis, mild to moderate Covid-19 developed in 23 of 717 placebo recipients (3.2%) and in 19 of 750 vaccine recipients (2.5%), for an efficacy of 21.9% (95% confidence interval [CI], −49.9 to 59.8). Among the 42 participants with Covid-19, 39 cases (92.9%) were caused by the B.1.351 variant; vaccine efficacy against this variant, analyzed as a secondary end point, was 10.4% (95% CI, −76.8 to 54.8). The incidence of serious adverse events was balanced between the vaccine and placebo groups. Two-dose regimen of the ChAdOx1 nCoV-19 vaccine did not show protection against mild to moderate Covid-19 due to the B.1.351 variant.

Emary et al. 2021 [24] published results from post-hoc analysis of the efficacy of the adenoviral vector vaccine, ChAdOx1 nCoV-19 (AZD1222), revealed that laboratory virus neutralization activity by vaccine-induced antibodies was lower against B.1.1.7 variant. However, clinical vaccine efficacy against symptomatic NAAT positive infection was good, with 70% (95% CI 44–85) for B.1.1.7 and 82% (68–89) for other lineages.

Current data related to clinical effectiveness and in vitro neutralisation, on Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) can be found in Table 2-2.

Lopez Bernal et al. 2021 published as preprint results from observational study related to the effectiveness of the BNT162b2 and ChAdOx1 COVID-19 vaccines against B.1.617.2 COVID-19 variant [52]. Effectiveness was notably lower after 1 dose of vaccine with B.1.617.2 cases 33.5% (95% CI: 20.6 to 44.3) compared to B.1.1.7 cases 51.1% (95% CI: 47.3 to 54.7) with similar results for both vaccines. With BNT162b2 2 dose effectiveness reduced from 93.4% (95% CI: 90.4 to 95.5) with B.1.1.7 to 87.9% (95% CI: 78.2 to 93.2) with B.1.617.2. With ChAdOx1 2 dose effectiveness reduced from 66.1% (95% CI: 54.0 to 75.0) with B.1.1.7 to 59.8% (95% CI: 28.9 to 77.3) with B.1.617.2. Sequenced cases detected after 1 or 2 doses of vaccination had higher odds of infection with B.1.617.2 compared to unvaccinated cases (OR 1.40; 95%CI: 1.13-1.75).

Data related to development of vaccine in children can be found in Table 2-3.

2.3 BioNTech/Fosun Pharma/Pfizer

The reader is referred to the earlier version (V13_April) for more details on the vaccines developed by BioNTech and Pfizer – Comirnaty.

On May 3, 2021 EMA’s human medicines committee started an accelerated assessment of data submitted on Comirnaty, including results from a large
ongoing clinical study involving adolescents from 12 years of age, in order to decide whether to recommend the extension of indication [59].

On May 10, 2021 FDA authorised expanded the emergency use authorization (EUA) for the Pfizer-BioNTech COVID-19 Vaccine for the prevention of COVID-19 to include adolescents 12 through 15 years of age [60].

Current data related to clinical effectiveness and in vitro neutralisation, on Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) SARS-CoV-2 variants can be found in Table 2-2.

Real-world observational studies found high effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 strain [59]. When vaccine effectiveness at 7 days or longer after the second dose was 95% against SARS-CoV-2 infection, 97% against symptomatic COVID-19, 97% against hospitalisation, and 98% against severe or critical disease) and B.1.351 variants: in Qatar (estimated effectiveness against any documented infection with the B.1.1.7 variant was 89.5% at 14 days or more after the second dose; effectiveness against any documented infection with the B.1.351 variant was 75%; effectiveness against severe, critical, or fatal disease with the B.1.1.7 and B.1.351 variants was very high, at 97%) [66, 67].

Lopez Bernal et al. 2021 published as preprint results from observational study related to the effectiveness of the BNT162b2 and ChAdOx1 COVID-19 vaccines against B.1.617.2 COVID-19 variant [52]. Effectiveness was notably lower after 1 dose of vaccine against B.1.617.2 compared to B.1.1.7, and higher against B.1.351. Compared to the 12-15 year old participants, BNT162b2 had a favorable safety and side-effect profile, with mainly transient mild to-moderate reactogenicity (preponderantly injection-site pain [in 79 to 86% of participants], fatigue [in 60 to 66%], and headache [in 55 to 65%]); there were no vaccine related serious adverse events and few overall serious adverse events. The geometric mean ratio of SARS-CoV-2 50% neutralising titer after dose 2 in 12-15-year-old participants relative to 16-25-year-old participants was 1.76 (95% confidence interval [CI], 1.47 to 2.10), which met the non inferiority criterion of a lower boundary of the two-sided 95% confidence interval greater than 0.67 and indicated a greater response in the 12-15-year-old cohort. Among participants without evidence of previous SARS-CoV-2 infection, no Covid-19 cases with an onset of 7 or more days after dose 2 were noted among...
BNT162b2 recipients, and 16 cases occurred among placebo recipients. The observed vaccine efficacy was 100% (95% CI, 75.3 to 100).

2.4 Janssen Pharmaceutical/ Johnson & Johnson

The reader is referred to the earlier version (V13_April) for more details on the COVID-19 Vaccine J&J

Sadoff et al. 2021[29] published results from an international, randomized, double-blind, placebo-controlled, phase 3 trial, in which adult participants were randomly assigned in a 1:1 ratio to receive a single dose of Ad26.COV2.S (5 × 10^{10} viral particles) or placebo (ENSEMBLE, NCT04505722). The per-protocol population included 19,630 SARS-CoV-2–negative participants who received Ad26.COV2.S and 19,691 who received placebo. On the basis of interim sequencing data from 512 unique RT-PCR–positive samples obtained from 714 participants (71.7%) with SARS-CoV-2 infection, the reference sequence (Wuhan-Hu-1 including the D614G mutation) was detected predominantly in the United States (190 of 197 sequences [96.4%]) and the 20H/501Y.V2 variant (also called B.1.351) was detected predominantly in South Africa (86 of 91 sequences [94.5%]), whereas in Brazil, the reference sequence was detected in 38 of 124 sequences (30.6%) and the reference sequence with the E484K mutation (P.2 lineage) was detected in 86 of 124 sequences (69.4%).

Ad26.COV2.S protected against moderate to severe-critical Covid-19 with onset at least 14 days after administration (116 cases in the vaccine group vs. 348 in the placebo group; efficacy, 66.9%; adjusted 95% confidence interval [CI], 59.0 to 73.4) and at least 28 days after administration (66 vs. 193 cases; efficacy, 66.1%; adjusted 95% CI, 55.0 to 74.8). Vaccine efficacy was higher against severe-critical Covid-19 (76.7% [adjusted 95% CI, 54.6 to 89.1]) for onset at ≥14 days and 85.4% [adjusted 95% CI, 54.2 to 96.9]) for onset at ≥28 days. Despite 86 of 91 cases (94.5%) in South Africa with sequenced virus having the 20H/501Y.V2 variant (also called B.1.351), vaccine efficacy was 52.0% and 64.0% against moderate to severe-critical Covid-19 with onset at least 14 days and at least 28 days after administration, respectively, and efficacy against severe-critical Covid-19 was 73.1% and 81.7%, respectively. Reactogenicity was higher with Ad26.COV2.S than with placebo but was generally mild to moderate and transient. The incidence of serious adverse events was balanced between the two groups. Three deaths occurred in the vaccine group (none were Covid-19–related), and 16 in the placebo group (5 were Covid-19–related).

Current data related to clinical effectiveness and in vitro neutralisation, on Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) SARS-CoV-2 variants can be found in Table 2-2.

Data related to development of vaccine in children can be found in Table 2-3.
2.5 Novavax

About the vaccine

The Novavax COVID-19 vaccine being developed by Novavax and co-sponsored by CEPI [68] is a recombinant protein nanoparticle technology platform that is intended to generate antigens derived from the coronavirus spike (S) protein [69]. Matrix-M™ is Novavax patented saponin-based adjuvant that has the potential to boost the immune system by stimulating the entry of antigen-presenting cells into the injection site and enhancing antigen presentation in local lymph nodes, boosting immune responses [70, 71].

Estimated timeline for approval

The phase 1/2, randomized, placebo-controlled, triple-blind, parallel assignment clinical trial (NCT04368988) in 131 healthy adults aims to evaluate the immunogenicity and safety of SARS-CoV-2 rS nanoparticle vaccine with or without Matrix-M adjuvant in healthy participants ≥ 18 to 59 years of age [72-75]. This RCT will be conducted from May 15, 2020 to July 31, 2021. Estimated Primary Completion Date is December 31, 2020.

A phase 2b RCT trial (NCT04533399) aims to evaluate the effectiveness and safety in South Africans adults; 2904 participants are planned to enrolled, with estimated primary completion date in November 2021 [75].

A phase 3 RCT (EUdraCT 2020-004123-16) is ongoing in healthy adults in the UK. Main aims is to demonstrate the efficacy of SARS-CoV-2 rS with Matrix-M1 adjuvant in the prevention of virologically confirmed (by polymerase chain reaction [PCR]) to SARS-CoV-2, symptomatic COVID-19, when given as a 2-dose vaccination regimen, as compared to placebo, in serologically negative ≥ 160 SARS-CoV-2 adult participants. 9000 participants are planned to enrolled.

Results of publications

A results from above mentioned randomized, placebo-controlled, phase 1/2 trial to evaluate the safety and immunogenicity of the rSARS-CoV-2 vaccine in 5-μg and 25-μg doses, with or without Matrix-M1 adjuvant, and with observers unaware of trial-group assignments in 131 healthy adults were published [13]. In phase 1, vaccination comprised two intramuscular injections, 21 days apart. After randomization, 83 participants were assigned to receive the vaccine with adjuvant and 25 without adjuvant, and 23 participants were assigned to receive placebo. No serious adverse events were noted. Uncribted adverse events were mild in most participants; there were no severe adverse events. The two-dose 5-μg adjuvanted regimen induced geometric mean anti-spike IgG (63,160 ELISA units) and neutralization (3906) responses that exceeded geometric mean responses in convalescent serum from mostly symptomatic Covid-19 patients (8344 and 983, respectively).

Forina et al. 2021 [14] published, as preprint, results from phase 2 component of above mentioned RCT (NCT04368988): participants were randomly assigned to receive either one or two intramuscular doses of 5-μg or 25-μg NVX-CoV2373 or placebo, 21 days apart. Approximately 250 participants each were assigned to one of four vaccine groups or placebo. Of these, approximately 45% were older participants. Reactogenicity was
Results: Vaccines

predominantly mild to moderate in severity and of short duration (median <3 days) after first and second vaccination with NVX-CoV2373, with higher frequencies and intensity after second vaccination and with the higher dose, and occurred less frequently and was of lower intensity in older participants. The two-dose regimen of 5µg NVX-CoV2373 induced robust geometric mean titer (GMT) IgG anti-spike protein (65,019 and 28,137 EU/mL) and wild-type virus neutralizing antibody (2001 and 981 titers) responses in younger and older participants, respectively, with seroconversion rates of 100% in both age groups.

On January 28, 2021, Novavax, Inc. announced that NVX-CoV2373, its protein-based COVID-19 vaccine candidate, met the primary endpoint, with a vaccine efficacy of 89.3%, in its phase 3 clinical trial conducted in the United Kingdom. The study assessed efficacy during a period with high transmission and with a new UK variant strain of the virus emerging and circulating widely. It was conducted in partnership with the UK Government’s Vaccines Taskforce. Novavax also announced successful results of its phase 2b study conducted in South Africa, in which approximately 90% of COVID-19 cases attributed to South Africa escape variant: 60% efficacy for the prevention of mild, moderate and severe COVID-19 disease was observed [76].

Health et al. [16] published results as preprint from his phase 3 RCT in UK mentioned above (EudraCT 2020-004123-16): A total of 15,187 participants were randomized, of whom 7569 received NVX-CoV2373 and 7570 received placebo. NVX-CoV2373 was 89.7% (95% confidence interval, 80.2 to 94.6) effective in preventing COVID-19, with no hospitalisations or deaths reported. There were five cases of severe COVID-19, all in the placebo group. Post hoc analysis revealed efficacies of 96.4% (73.8 to 99.5) and 86.3% (71.3 to 93.5) against the prototype strain and B.1.1.7 variant, respectively. Vaccine efficacy was similar across subgroups, including participants with comorbidities and those ≥65 years old. Reactogenicity was generally mild and transient. The incidence of serious adverse events was low and similar in the two groups.

Shinde et al. 2021 [15] published as preprint, and then as scientific publication [77] preliminary results from phase 2a/b RCT in South Africa: a total of 4387 participants were randomized and dosed at least once, 2199 with NVX-CoV2373 and 2188 with placebo. Vaccine efficacy was 49.4% (95% confidence interval [CI]: 6.1 to 76.2). Efficacy in HIV-negative participants was 60.1% (95% CI: 19.9 to 80.1), and did not differ by baseline serostatus. Of the primary endpoint cases with available whole genome sequencing, 38 (92.7%) of 41 were the B.1.351 variant. Post-hoc vaccine efficacy against B.1.351 was 51.0% (95% CI: 0.6 to 76.2) in HIV-negative participants. Preliminary local and systemic reactogenicity events were more common in the vaccine group; serious adverse events were rare in both groups.

Current data related to clinical effectiveness and in vitro neutralisation, on Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) SARS-CoV-2 variants can be found in Table 2-2.

Data related to development of vaccine in children can be found in Table 2-3.
2.6 CureVac

About the vaccine

The vaccine candidate CVnCoV, developed by CureVac, is a protamine-complexed mRNA-based vaccine expressing undisclosed SARS-CoV-2 protein(s). Each CureVac product is a tailored molecular creation that contains 5' and 3' untranslated regions and the open reading frame to make sure translation of the messenger RNA (mRNA) sequence results in appropriate levels of proteins in the body. This means that CureVac’s technology uses mRNA as a data carrier in order to train the human body to produce ideal levels of proteins. Thereby the immune system is stimulated and can respond to antigens [78, 79].

CureVac and Bayer joint forces in January 2021 on COVID-19 vaccine candidate CVnCoV to ramp up the production and distribution of vaccine. Vaccine remains stable and within defined specifications for at least three months when stored at a standard refrigerator temperature of +5°C (+41°F) and for up to 24 hours as ready-to-use vaccine when stored at room temperature, https://www.curevac.com/en/covid-19/.

Estimated timeline for approval

Phase 1 (NCT04449276) study aims to evaluate the safety and reactogenicity profile after 1 and 2 dose administrations of CVnCoV at different dose levels. It is funded by Coalition for Epidemic Preparedness Innovations (CEPI), and located in Belgium and Germany. More than 250 healthy participants are enrolled in the trial. Preliminary results reported as preprint in November 2020 strongly supported the decision to advance a 12µg dose in the pivotal phase 2b/3 study [30], https://www.curevac.com/en/covid-19/.

Phase 2, RCT (NCT04515147) initiated in September 2020 aims to evaluate the safety and reactogenicity profile after 1 and 2 dose administrations of investigational SARS-CoV-2 mRNA vaccine (CVnCoV) at different dose levels and to evaluate the humoral immune response after 1 and 2 dose administrations of CVnCoV. 691 participants are planned to be enrolled in the trial, with estimated study completion date in November 2021 [75].

Pivotal **phase 2b/3** study (NCT04652102/EUDraCT 2020-00399822), initiated in December 2020, assesses a 12µg dose of CVnCoV in two parts: an initial phase 2b trial which is expected to seamlessly merge into a phase 3 efficacy trial. Both the phase 2b and phase 3 trials are randomized, observer-blind, placebo-controlled studies in adults over 18 years of age or older. While the objective of the phase 2b study is to further characterize the safety, reactogenicity and immunogenicity of CVnCoV, the phase 3 assesses CVnCoV efficacy. Subjects will be enrolled at multiple sites and vaccinations follow a two-dose schedule on day 1 and day 29 of either CVnCoV or a placebo. In total, more than 35,000 participants will be included in the phase 2b/3 HERALD study at multiple sites in Europe and Latin America, https://www.curevac.com/en/covid-19/.

Phase 3 RCT (NCT04674189) aims to evaluate the safety and immunogenicity of CVnCoV vaccine in adult healthcare workers in Germany. Estimated enrollment is 2520 participants, with estimated primary completion date in June 2021 [75].
Results of publications

Preliminary results related to phase 1 (NCT04449276) reported as preprint in November 2020 showed that two doses of CVnCoV ranging from 2 μg to 12 μg per dose, administered 28 days apart were safe. No vaccine-related serious adverse events were reported. There were dose-dependent increases in frequency and severity of solicited systemic adverse events, and to a lesser extent of local reactions, but the majority were mild or moderate and transient in duration. Median titers measured in assays two weeks after the second 12 μg dose were comparable to the median titers observed in convalescent sera from COVID-19 patients. Seroconversion (defined as a 4-fold increase over baseline titer) of virus neutralizing antibodies two weeks after the second vaccination occurred in all participants who received 12 μg doses [30].

Current data related to clinical effectiveness and in vitro neutralisation, on Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) SARS-CoV-2 variants can be found in Table 2-2.

Data related to development of vaccine in children can be found in Table 2-3.

2.7 Sanofi and GSK

About the vaccine

In April 2020, Sanofi and GSK agreed to develop an adjuvanted vaccine for COVID-19, using innovative technology from both companies. Sanofi through its S-protein COVID-19 antigen, based on recombinant DNA technology (this technology has produced an exact genetic match to proteins found on the surface of the virus, and the DNA sequence encoding this antigen has been combined into the DNA of the baculovirus expression platform the basis of Sanofi’s licensed recombinant influenza product in the US). GSK through its proven pandemic adjuvant technology which can be of particular importance in a pandemic situation since it may reduce the amount of vaccine protein required per dose, allowing more vaccine doses to be produced and therefore contributing to protect more people. Development of the recombinant-based COVID-19 vaccine candidate is being supported through funding and a collaboration with the Biomedical Advanced Research and Development Authority (BARDA), part of the office of the Assistant Secretary for Preparedness and Response at the U.S. Department of Health and Human Services, https://www.sanofi.com/en/media-room/press-releases/2020/2020-04-14-13-00-00. Vaccine could be kept in standard refrigerators, making it easier to distribute.

Estimated timeline for approval

Phase 1/2 study

The interim RCT, phase 1/2 results (NCT04537208, as preprint, and now as scientific publication) showed a level of neutralising antibody titers after two doses comparable to sera from patients who recovered from COVID-19, a balanced cellular response in adults aged 18 to 49 years, but insufficient neutralising antibody titers in adults over the age of 50. The candidate showed transient but higher than expected levels of reactogenicity likely due to the suboptimal antigen for mulation, with no serious adverse events related to the vaccine candidate. The most favorable results were observed in the group which tested the highest antigen concentration, combined with the GSK adjuvant, showing neutralisation titers in 88% of participants. Seroconversion was observed in 89.6% of the 18 to 49 age group; 85% in the >50 age group; and 62.5% in the >60 age group [31][80].

Phase 2b and phase 3 studies

The Companies initiate a phase 2b study with an improved antigen for mulation in February 2021. On May 17, 2021 Sanofi and GSM announced in a press release that adjuvanted recombinant COVID-19 vaccine candidate achieved strong rates of neutralizing antibody responses, in line with those measured in people who have recovered from COVID-19, in all adult age groups in a phase 2 study with 722 volunteers. The phase 2 interim results showed 95% to 100% seroconversion following a second injection in all age groups (18 to 95 years old) and across all doses, with acceptable tolerability and with no safety concerns. Overall, the vaccine candidate elicited strong neutralizing antibody levels that were comparable to those generated by natural infection, with higher levels observed in younger adults (18 to 59 years old). After a single injection, high neutralizing antibody levels were generated in participants with evidence of prior SARS-CoV-2 infection, suggesting strong potential for development as a booster vaccine. Based on these positive phase 2 interim results, the companies initiate a global phase 3, randomized, double-blind study with the 10μg dose, in combination with GSK’s pandemic adjuvant. This phase 3 trial is expected to enroll more than 3500 adult participants from a broad range of countries and will assess the efficacy of two vaccine formulations including the D614 (Wuhan) and B.1.351 (South African) variants.

In parallel, the companies intend to conduct booster studies with various variant for mulations in order to assess the ability of a lower dose of the vaccine to generate a strong booster response regardless of the initial vaccine platform received. Pending positive phase 3 outcomes and regulatory reviews, the vaccine is expected to be approved in the fourth quarter of 2021 [81].

Current data related to clinical effectiveness and in vitro neutralisation, on Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) SARS-CoV-2 variants can be found in Table 2-2.

Data related to development of vaccine in children can be found in Table 2-3.
2.8 Valneva

About the vaccine

Valneva vaccine candidate VLA2001 consists of inactivated whole virus particles of SARS-CoV-2 with high S-protein density, in combination with two adjuvants, alum and CpG 1018. This adjuvant combination has consistently induced higher antibody levels in preclinical experiments than alum-only formulations and shown a shift of the immune response towards Th1. VLA2001 is produced on Valneva’s established Vero-cell platform leveraging the manufacturing technology for Valneva’s licensed Japanese encephalitis vaccine, IXIARO®. The process, which has already been upscaled to final industrial scale, includes inactivation with BPL to preserve the native structure of the S-protein.

VLA2001 is expected to conform with standard cold chain requirements (2-8°C).

Estimated timeline for approval

Valneva initiated phase 1/2 clinical study in December 2020; randomised, double blind trial evaluating the safety and immunogenicity for three dose levels in approximately 150 healthy adults. The primary endpoint read-out will be two weeks after completion of the two-dose primary immunization (day 0, 21). Subject to analysis of this data, additional trials are expected to commence immediately thereafter. A total of 150 healthy adults aged 18 to 55 years have been recruited. Initial results are expected in April 2021, http://valneva.com/press-release/valneva-commences-manufacturing-of-its-inactivated-adjuvanted-covid-19-vaccine-completes-phase-1-2-study-recruitment/.

On 6 April 2021, Valneva announced results from above mentioned RCT, suggested the vaccine is immunogenic, with more than 90% of all study participants developing significant levels of antibodies to the SARS-CoV-2 virus spike protein across three dose groups tested. In the high dose group, after two doses, antibody titres were at or above levels for a panel of convalescent sera, 2021 https://valneva.com/press-release/valneva-reports-positive-phase-1-2-data-for-its-inactivated-adjuvanted-covid-19-vaccine-candidate-vla2001/.

The Company currently plans to include more than 4,000 participants in additional trials, which it believes could support an initial regulatory approval as soon as the fourth quarter of 2021.

Current data related to clinical effectiveness and in vitro neutralisation, on Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) SARS-CoV-2 variants can be found in Table 2-2.

Data related to development of vaccine in children can be found in Table 2-3.

2.9 Sinovac Life Science Co., Ltd

The reader is referred to the earlier version (V09_December 2020, subsection 2.5) for more details on the inactivated CoronaVac vaccine developed by Sinovac Life Sciences Co., Ltd.
On May 4, 2021, EMA’s human medicines committee has started a rolling review of COVID-19 Vaccine (Vero Cell) Inactivated, developed by Sinovac Life Sciences Co., Ltd. The EU applicant for this medicine is Lii’On Sr.1 [9].

Han et al. 2021 [82] published results as a preprint from a randomised, double-blind, placebo-controlled phase 1/2 clinical trial of CoronaVac in healthy children and adolescents aged 3-17 years old in Zhanhuang (Hebei, China) (NCT04551547). CoronaVac was well tolerated and induced strong neutralising antibody responses in children and adolescents aged 3-17 years. Vaccine (in 0.5 mL aluminium hydroxide adjuvant) or placebo (adjuvant only) was given by intramuscular injection in two doses (day 0 and day 28). Phase 1 trial was conducted in 71 participants with an age de-escalation in tree groups and dose-escalation in two blocks (1.5ug or 3ug per injection). Within each block, participants were randomly assigned (3:1) using block randomisation to receive CoronaVac or placebo. In phase 2, 480 participants were randomly assigned (2:2:1) using block randomisation to receive either CoronaVac at 1.5ug or 3ug per dose, or placebo. The primary safety endpoint was adverse reactions within 28 days after each injection in all participants who received at least one dose. The primary immunogenicity endpoint was seroconversion rate at 28 days after the second injection and its GMT as the secondary endpoint.

This study is ongoing and is registered with ClinicalTrials.gov (NCT04551547). 500 participants received at least one dose of vaccine or placebo (n=71 for phase 1 and n=479 for phase 2; safety population). In the combined safety profile of phase 1 and phase 2, any adverse reactions within 28 days after injection occurred in 56 (26%) of 219 participants in the 1.5ug group, 63 (29%) of 217 in the 3ug group and 27 (24%) of 114 in the placebo group, with no significant difference. Most adverse reactions were mild and moderate in severity and injection site pain (7% [13%]) of 550 participants was the most frequently reported event. As of March 12, 2021, only one serious adverse event has been reported, which was considered unrelated to vaccination. In phase 1, seroconversion after the second dose was observed in 27 of 27 participants (100.0% [95% CI 87.3-100.0]) in the 1.5ug groups and 26 of 26 participants (100.0% [86.8-100.0]) in the 3ug group, with the geometric mean titers of 55.0 (95% CI 38.9-77.9) and 117.4 (87.8-157.0). In phase 2, seroconversion was seen in 180 of 186 participants (96.8% [93.1-98.8]) in the 1.5ug group and 180 of 180 participants (100.0% [98.0-100.0]) in the 3ug group, with the geometric mean titers of 86.4 (73.9-101.0) and 142.2 (124.7-162.1). There were no detectable antibody responses in the placebo groups.

Current data related to clinical effectiveness and in vitro neutralisation, on Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) SARS-CoV-2 variants can be found in Table 2-2.

Data related to development of vaccine in children can be found in Table 2-3.
3 Results: Therapeutics

On May 5, 2021, the European Commission proposed EU Strategy for the development and availability of COVID-19 therapeutics, to support the development and availability of much-needed COVID-19 therapeutics, including for the treatment of ‘long COVID’. This Strategy covers the full lifecycle of medicines: from research, development and manufacturing to procurement and deployment. It includes clear actions and targets in the research, development and innovation; access to and swift approval of clinical trials; scanning for candidate therapeutics; supply chains and delivery of medicine; regulatory flexibility; joint procurement and financing and international cooperation to make medicine available to all, https://ec.europa.eu/commission/presscorner/detail/en/IP_21_2201.

Current therapeutic management of patients with COVID-19 (outpatients and hospitalised patients): Summary

Dexamethasone (and other corticosteroids)

In EU, dexamethasone use is endorsed by EMA following referral procedure: it is indicated in adults and adolescents (from 12 years of age and weighing at least 40 kg) who require supplemental oxygen therapy. In all cases, the recommended dose in adults and adolescents is 6 milligrams once a day for up to 10 days.

In current WHO living guidance the WHO panel made two recommendations: a strong recommendation (based on moderate certainty evidence) for systemic (i.e. intravenous or oral) corticosteroid therapy (e.g. 6 mg of dexamethasone orally or intravenously daily or 50 mg of hydrocortisone intravenously every 8 hours) for 7 to 10 days in patients with severe and critical COVID-19, and a conditional recommendation (based on low certainty evidence) not to use corticosteroid therapy in patients with non-severe COVID-19.

The US COVID-19 Treatment Guidelines Panel recommends using dexamethasone (at a dose of 6 mg per day for up to 10 days) in patients with COVID-19 who are mechanically ventilated (AI) and in patients with COVID-19 who require supplemental oxygen but who are not mechanically ventilated (BI). The Panel recommends against using dexamethasone in patients with COVID-19 who do not require supplemental oxygen (AI). If dexamethasone is not available, the Panel recommends using alternative glucocorticoids such as prednisone, methylprednisolone, or hydrocortisone (AIlll). For more details related to combination therapy with remdesivir or tocilizumab see remdesivir and tocilizumab below.

Daily regimen of dexamethasone 6 mg once daily is equivalent to 160 mg of hydrocortisone, 40 mg of prednisone, and 32 mg of methylprednisolone.
Remdesivir (Veklury)

Remdesivir (Veklury) is an antiviral medicine for systemic use which received a conditional marketing authorisation in EU. It is indicated for the treatment of coronavirus disease 2019 (COVID-19) in adults and adolescents (aged 12 years and older with body weight at least 40 kg) with pneumonia requiring supplemental oxygen. On June 11, 2021 EMA stated that PRAC has recommended a change to the product information to include sinus bradycardia as an adverse reaction of unknown frequency for this medicine.

The FDA approved remdesivir for use in adult and pediatric patients 12 years of age and older and weighing at least 40 kilograms (about 88 pounds) for the treatment of COVID-19 requiring hospitalisation.

Current WHO living guidance on remdesivir for COVID-19 has a conditional recommendation against the use of remdesivir in hospitalised patients with COVID-19, regardless of disease severity.

The US COVID-19 Treatment Guidelines Panel issued new recommendations on remdesivir treatment for patients with COVID-19: There are insufficient data to recommend either for or against the routine use of remdesivir in hospitalised but does not require supplemental oxygen. For patients at high risk of disease progression, the use of remdesivir may be appropriate.

Remdesivir is recommended for use in hospitalised patients who require supplemental oxygen (BIIa); Dexamethasone plus remdesivir (e.g., for patient who required increasing amounts of supplemental oxygen) (BIII); Dexamethasone (e.g., when combination therapy with remdesivir cannot be used or is not available) (BII). For hospitalized patients with COVID-19 who require oxygen delivery through a high-flow device or, noninvasive ventilation. Use one of the following options: Dexamethasone (AI); Dexamethasone plus remdesivir (e.g., for patients who require increasing amounts of oxygen) (BIII). For patients who were recently hospitalised with rapidly increasing oxygen needs and systemic inflammation: Add tocilizumab to one of the two options above (BIIa).

For hospitalised patients with COVID-19 who require invasive mechanical ventilation or extracorporeal membrane oxygenation: Dexamethasone (AI). For patients who are within 24 hours of administration to the ICU dexamethasone plus tocilizumab (BIIa).

Baricitinib

The FDA recently issued an emergency use authorization (EUA) for the Janus kinase inhibitor baricitinib to be used in combination with remdesivir in patients with COVID-19 who require oxygen or ventilatory support.

The US COVID-19 Treatment Guidelines Panel recommends using either baricitinib (BIIa) or tocilizumab (BIIa) (listed alphabetically) in combination with dexamethasone alone or dexamethasone plus remdesivir for the treatment of COVID-19 in hospitalised patients on high-flow oxygen or noninvasive ventilation who have evidence of clinical progression or increased markers of inflammation. There is insufficient evidence for the Panel to recommend either for or against the use of baricitinib combination with dexamethasone for the treatment of COVID-19 in hospitalised patients who require invasive mechanical ventilation.

The Panel recommends against the use of baricitinib in combination with tocilizumab for the treatment of COVID-19, except in a clinical setting with infection and inflammation, such as sinus bradycardia, and when used with dexamethasone.

EMA vorläufige Zulassung:
Remdesivir (Veklury)
PRAC: Sinusbradykardie

von WHO nicht empfohlen

US COVID-19 Treatment Guidelines Panel: inssufiziente Datenlage bei Pt ohne Sauerstoff Hochrisiko Pt: ev. angemessen
Empfehlung: Pts, die zusätzlich Sauerstoff benötigen, nicht aber für jene, die bereits künstlich beatmet werden

zugelassen nur in USA
(EUA): Baricitinibals Kombinationstherapie mit Remdesivir
Casirivimab and imdevimab (REGN-COV2)

The U.S. Food and Drug Administration issued an emergency use authorization (EUA) for casirivimab and imdevimab (REGN-COV2) to be administered together for the treatment of mild to moderate COVID-19 in adults and pediatric patients (12 years of age or older weighing at least 40 kg [about 88 pounds]) with positive results of direct SARS-CoV-2 viral testing and who are at high risk for progressing to severe COVID-19.

On February 26, 2021 EMA stated that the CHMP has completed its review to provide a harmonised scientific opinion at EU level to support national decision making on the possible use of the antibodies before a formal authorisation is issued. The Agency concluded that the combination (REGN-COV2) can be used for the treatment of confirmed COVID-19 in patients who do not require supplemental oxygen and who are at high risk of progressing to severe COVID-19.

The US COVID-19 Treatment Guidelines Panel recommends using one of the following combination anti-SARS-CoV-2 monoclonal antibodies to treat patients with mild to moderate COVID-19 who are at high risk of clinical progression, as defined by the Emergency Use Authorization (EUA) criteria (listed in alphabetical order):

Bamlanivimab plus etesevimab; or Casirivimab plus imdevimab; or Sotrovimab.

There are currently no comparative data to determine whether there are differences in clinical efficacy or safety between casirivimab plus imdevimab and bamlanivimab plus etesevimab or sotrovimab.

The Panel recommends against the use of anti-SARS-CoV-2 monoclonal antibodies for patients who are hospitalized because of COVID-19, except in a clinical trial (AIII). However, their use should be considered for persons with mild to moderate COVID-19 who are hospitalized for a reason other than COVID-19 but who otherwise meet the EUA criteria.

Bamlanivimab monotherapy or in combination with etesevimab

The U.S. Food and Drug Administration revoked an Emergency Use Authorization (EUA) for the investigational monoclonal antibody therapy bamlanivimab (previously LY-CoV555), when administered alone, for the treatment of mild-to-moderate COVID-19 in adult and pediatric patients due to sustained increase of SARS-CoV-2 viral variants that are resistant to bamlanivimab alone resulting in the increased risk for treatment failure.

On February 9, 2021 the FDA issued an EUA for bamlanivimab and etesevimab administered together for the treatment of mild to moderate COVID-19 in adults and pediatric patients (12 years of age or older weighing at least 40 kg [about 88 pounds]) who test positive for SARS-CoV-2 and who are at high risk for progressing to severe COVID-19.
On March 5, 2021 EMA stated that the CHMP has completed its review started in February 2021, to provide a harmonised scientific opinion at EU level to support national decision making on the possible use of the antibodies before a formal authorisation is issued. The Agency concluded that bamlanivimab monotherapy and bamlanivimab and etesevimab combination can be used together to treat confirmed COVID-19 in patients who do not require supplemental oxygen and who are at high risk of their COVID-19 disease becoming severe.

The US COVID-19 Treatment Guidelines Panel recommends using one of the following combination anti-SARS-CoV-2 monoclonal antibodies to treat our patients with mild to moderate COVID-19 who are at high risk of clinical progression, as defined by the Emergency Use Authorization (EUA) criteria (listed in alphabetical order):

Bamlanivimab plus etesevimab; or Casirivimab plus imdevimab; or Sotrovimab.

The Panel recommends against the use of anti-SARS-CoV-2 monoclonal antibodies for patients who are hospitalised because of COVID-19, except in a clinical trial (AIIa). However, their use should be considered for persons with mild to moderate COVID-19 who are hospitalised for a reason other than COVID-19 but who otherwise meet the EUA criteria.

Sotrovimab (VIR-7831)

On May 21, 2021 EMA stated that the CHMP has completed its review started in April 2021, to provide a harmonised scientific opinion at EU level to support national decision making on the possible use of the antibodies before a formal authorisation is issued. EMA concluded that sotrovimab can be used to treat confirmed COVID-19 in adults and adolescents (aged 12 years and above and weighing at least 40 kg) who do not require supplemental oxygen therapy and who are at risk of progressing to severe COVID-19.

The US COVID-19 Treatment Guidelines Panel recommends using one of the following combination anti-SARS-CoV-2 monoclonal antibodies to treat our patients with mild to moderate COVID-19 who are at high risk of clinical progression, as defined by the Emergency Use Authorization (EUA) criteria (listed in alphabetical order):

Bamlanivimab plus etesevimab; or Casirivimab plus imdevimab; or Sotrovimab.

The Panel recommends against the use of anti-SARS-CoV-2 monoclonal antibodies for patients who are hospitalised because of COVID-19, except in a clinical trial (AIIa). However, their use should be considered for persons with mild to moderate COVID-19 who are hospitalised for a reason other than COVID-19 but who otherwise meet the EUA criteria.

Regdanvimab (Regkirona)

On 26 March 2021 EMA announced that CHMP has completed a review of Celltrion’s monoclonal antibody regdanvimab (CT-P59) to support national authorities who may decide on the use of this medicine for COVID-19 prior to authorisation. EMA concluded that regdanvimab can be used for the treatment of confirmed COVID-19 in adult patients that do not require supplemental oxygen for COVID-19 and who are at high risk of progressing to severe COVID19.
Convalescent plasma

On February 4, 2021, FDA announced that former EUA is being revised to authorize only the use of high titer COVID-19 convalescent plasma for the treatment of hospitalised patients with COVID-19, early in the disease course and those hospitalised with impaired humoral immunity.

Tocilizumab

RECOVERY Collaborative Group published results from the RECOVERY trial related to tocilizumab. Tocilizumab improved survival and other clinical outcomes in severe and critical COVID-19 patients. These benefits were seen regardless of the level of respiratory support and were additional to the benefits of systemic corticosteroids.

The US COVID-19 Treatment Guidelines Panel recommends the use of tocilizumab (single intravenous dose of 8 mg/kg of actual body weight, up to 800 mg) in combination with dexamethasone (6 mg daily for up to 10 days) in certain hospitalised patients who are exhibiting rapid respiratory decompensation due to COVID-19. The patients included in this population are: Recently hospitalised patients who have been admitted to the intensive care unit (ICU) within the prior 24 hours and who require invasive mechanical ventilation or ECMO (BIIa); hospitalised who require non-invasive mechanical ventilation (NIV), or high-flow nasal cannula (HFNC) oxygen (>0.4 FiO₂/30 L/min of oxygen flow with rapidly increasing oxygen needs and systemic inflammation (BIIa). For the latter group of patients tocilizumab could be added to remdesivir also.

Lopinavir + ritonavir, chloroquine and hydroxychloroquine

Lopinavir + ritonavir, chloroquine and hydroxychloroquine are not effective in treating COVID-19 patients.

Other pharmaceuticals listed in this document

Related to other pharmaceuticals listed in this document the current evidence is uncertain or very uncertain about their effect on different clinical outcomes in COVID-19 patients. Further RCTs are currently ongoing.

EMA is providing guidance to assist developers of potential COVID-19 medicines to prepare for eventual applications for marketing authorisation. This includes scientific advice, as well as informal consultation with the COVID-19 EMA pandemic Task Force (COVID-ETF). The outcome of any consultation or advice from EMA is not binding on developers. COVID-19 medicines that have received EMA advice can be found in Table 3.1 below,

FDA-Revision der Zulassung von
Reconvalezcentenplasma: nur mit hohem Titer

RECOVERY Ergebnisse: bessere Ergebnisse bei schwerer/ kritischer Erkrankung unter tocilizumab

US COVID-19 Treatment Guidelines Panel:
Empfehlung in Kombination mit Dexamethason in einigen Patientengruppen,

ICU, beatmet, etc.

Lopinavir + ritonavir, chloroquine und hydroxychloroquine:
Nachweis für keine Wirksamkeit

EMA scientific advice für viele unterschiedliche Medikamente
Table 3-1: COVID-19 medicines that have received EMA advice

<table>
<thead>
<tr>
<th>Product</th>
<th>Developer</th>
<th>Therapeutic class/drug type</th>
<th>Development stage at time of guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIR7831, VIR7832</td>
<td>Vir Biotechnology/GSK</td>
<td>Antiviral (monoclonal antibody)</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>UNII911</td>
<td>Union Therapeutics</td>
<td>Antiviral</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Tocilizumab</td>
<td>Roche</td>
<td>Immunomodulator</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>SNG-001</td>
<td>Synargein</td>
<td>Immunomodulator</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Siltuximab</td>
<td>EUSApharma</td>
<td>Immunomodulator</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Sarilumab</td>
<td>Sanofi Aventis</td>
<td>Immunomodulator</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Remdesivir</td>
<td>Gilead</td>
<td>Antiviral</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>RBT-9</td>
<td>Renibus Therapeutics Inc</td>
<td>Antiviral</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Ravulizumab</td>
<td>Alexion</td>
<td>Other therapeutics</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Otillimab</td>
<td>GSK</td>
<td>Immunomodulator</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Meiplazumab</td>
<td>Jiangsu Pacific Meinouke Biophar,</td>
<td>Antiviral (mAb)</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Maverilumab</td>
<td>Kiniksa Pharmaceuticals</td>
<td>Immunomodulator</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Gsimilumab</td>
<td>Roivant</td>
<td>Immunomodulator</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Favipiravir</td>
<td>Glenmark Pharmaceuticals Ltd</td>
<td>Antiviral</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Emapalumab and anakinra</td>
<td>Swedish Orphan Biovitrum AB</td>
<td>Immunomodulator</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Eculizumab</td>
<td>Alexion</td>
<td>Immunomodulator</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Danoprevir</td>
<td>Ascleits Pharmaceuticals Co Ltd</td>
<td>Antiviral</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Copper chloride</td>
<td>ACOM srl</td>
<td>Antiviral</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Chloroquine and hydroxychloroquine cyclops DPI</td>
<td>PurelMS</td>
<td>Other therapeutics</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>Oxford University</td>
<td>Other therapeutics</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>CD24Fc</td>
<td>Oncoimmune Inc</td>
<td>Immunomodulator</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Baricitinib</td>
<td>Eli Lilly</td>
<td>Immunomodulator</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Apremilast</td>
<td>Amgen Europe BV</td>
<td>Immunomodulator</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>APN01</td>
<td>Apeiron Biologics</td>
<td>Immunomodulator</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Anti-SARS-CoV-2 polyclonal hyperimmune immunoglobulin</td>
<td>Alliance hyperimmune project (Biotech AG, Bio Products Laboratory, LFB, Octapharma, CSL Behring and Takeda)</td>
<td>Antiviral</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Acalabrutinib</td>
<td>Acerta Pharma BV</td>
<td>Immunomodulator</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>ABBV-47D11</td>
<td>AbbVie</td>
<td>Antiviral</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>AT-527</td>
<td>Roche</td>
<td>Antiviral</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Aviptadil</td>
<td>Relief Therapeutics Holding S.A.</td>
<td>Other therapeutics</td>
<td>Clinical Phase</td>
</tr>
<tr>
<td>BI 764198</td>
<td>Boehringer Ingelheim International</td>
<td>Other therapeutic</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Emiplacel</td>
<td>Biopharma Excellence GmbH</td>
<td>Other therapeutic</td>
<td>Clinical Phase</td>
</tr>
<tr>
<td>Itolizumab</td>
<td>Biocon Biologies Limited</td>
<td>Immunomodulator (monoclonal antibody)</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>SCTA01</td>
<td>Sinoceltech Ltd.</td>
<td>Antiviral (monoclonal antibody)</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>Colchicine</td>
<td>Pharmascience Inc / Montreal Health</td>
<td>Immunomodulator</td>
<td>Clinical phase</td>
</tr>
<tr>
<td>IgM enriched human immune globulin (Trimodulin) (BTS88)</td>
<td>Biotest AG</td>
<td>Antiviral</td>
<td>Clinical phase</td>
</tr>
</tbody>
</table>
In this document we present information for some therapies in development.

Table 3-2: Most advanced therapeutics in the R&D pipeline

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mechanism of operation</th>
<th>Approval Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remdesivir (Veklury®)</td>
<td>Antiviral agent</td>
<td>EMA: Conditional marketing authorisation granted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDA: Marketing authorisation granted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 RCTs (suspended and terminated)</td>
</tr>
<tr>
<td>Favipiravir (Avigan, T-705)</td>
<td>Antiviral agent</td>
<td>No withdrawn or terminated studies found, 1 suspended</td>
</tr>
<tr>
<td>Darunavir (Prezista®)</td>
<td>Antiviral agent</td>
<td>No withdrawn, suspended or terminated studies found</td>
</tr>
<tr>
<td>Camostat Mesilate (Foipan®)</td>
<td>Antiviral cell-entry inhibitor</td>
<td>1 RCT withdrawn, no suspended or terminated studies found</td>
</tr>
<tr>
<td>APN01 (rhACE2)</td>
<td>Antiviral cell-entry inhibitor</td>
<td>1 RCT withdrawn</td>
</tr>
<tr>
<td>Tocilizumab (RoActemra®)</td>
<td>Monoclonal antibody</td>
<td>1 RCT withdrawn, 4 RCTs terminated</td>
</tr>
<tr>
<td>Sarilumab (Kevzara®)</td>
<td>Monoclonal antibody</td>
<td>1 RCT suspended, 1 RCTs terminated</td>
</tr>
<tr>
<td>Interferon beta 1a (SNG001)</td>
<td>Interferon</td>
<td>FDA revised Emergency Use Authorisation (EUA): only the use of high titer COVID-19 convalescent plasma for hospitalised patients, early in the disease course, with impaired humoral immunity</td>
</tr>
<tr>
<td>Interferon beta 1b</td>
<td>Interferon</td>
<td>1 RCT terminated, 1 RCT withdrawn</td>
</tr>
<tr>
<td>Convalescent Plasma</td>
<td>Convalescent Plasma</td>
<td></td>
</tr>
<tr>
<td>Plasma derived medicinal</td>
<td>Neutralizing monoclonal antibodies</td>
<td></td>
</tr>
<tr>
<td>products: REGN-COV2; LY-CoV555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(bamlanivimab); LY-CoV016 (etesevimab); AZD7442; sotrovimab (VIR-7831); regdanvimab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solnatinde</td>
<td>Synthetic peptide</td>
<td>No withdrawn, suspended or terminated studies found</td>
</tr>
<tr>
<td>Umifenovir (Arbidol®)</td>
<td>Antiviral agent</td>
<td>No withdrawn, suspended or terminated studies found</td>
</tr>
<tr>
<td>Dexamethasone and other</td>
<td>Glucocorticoid</td>
<td>EMA: Dexamethasone use endorsed after Article 5(3) review</td>
</tr>
<tr>
<td>corticosteroids: Budesonide</td>
<td></td>
<td>2 RCTs terminated, 1 RCT suspended, 1 RCT withdrawn</td>
</tr>
<tr>
<td>Anakinra (Kyreret®)</td>
<td>Interleukin 1 receptor antagonist</td>
<td>1 RCT suspended, 2 RCT terminated</td>
</tr>
<tr>
<td>Colchicine</td>
<td>An alkaloid, with anti-gout and anti-</td>
<td>1 RCT withdrawn, no suspended or terminated studies found</td>
</tr>
<tr>
<td></td>
<td>inflammatory activities</td>
<td></td>
</tr>
<tr>
<td>Nafamostat (Futhan®)</td>
<td>Trypsin-like serine protease inhibitor</td>
<td>No withdrawn, suspended or terminated studies found</td>
</tr>
<tr>
<td>Gimsilumab</td>
<td>Human monoclonal antibody</td>
<td>No withdrawn, suspended or terminated studies found</td>
</tr>
<tr>
<td>Canakinumab</td>
<td>Human monoclonal antibody</td>
<td>No withdrawn, suspended or terminated studies found</td>
</tr>
<tr>
<td>Lenizumab</td>
<td>Recombinant monoclonal antibody</td>
<td>No withdrawn, suspended or terminated studies found</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>Vitamin</td>
<td>No withdrawn or suspended, 1 terminated studies found</td>
</tr>
<tr>
<td>Baricitinib</td>
<td>Inhibitor of Janus kinase (JAK)1 and JAK2</td>
<td>FDA Emergency Use Authorisation (EUA): Baricitinib in combination with remdesivir</td>
</tr>
</tbody>
</table>
The reader is referred to the earlier version (V13_April) for more details on remdesivir (Veklury).

On June 11, 2021, EMA stated that PRAC has recommended a change to the product information for Veklury (remdesivir) to include sinus bradycardia (heart beats more slowly than usual) as an adverse reaction of unknown frequency for this medicine. The majority of events of sinus bradycardia resolved a few days after the treatment with Veklury was discontinued [83].

<table>
<thead>
<tr>
<th>Drug</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molnupiravir</td>
<td>Prodrug of the nucleoside analogue N4-hydroxycytidine (NHC)</td>
<td>No withdrawn, suspended or terminated studies found</td>
</tr>
<tr>
<td>Ivermectin</td>
<td>Antiparasitic</td>
<td>No withdrawn, suspended or terminated studies found</td>
</tr>
<tr>
<td>Aspirin (acetylsalicylic acid)</td>
<td>Antitrombotic</td>
<td>1 RCT withdrawn, no suspended or terminated studies found</td>
</tr>
<tr>
<td>Aviptadil (RLF-100)</td>
<td>Synthetic form of Human Vasoactive Intestinal Polypeptide (VIP)</td>
<td>No withdrawn, suspended or terminated studies found</td>
</tr>
<tr>
<td>Artesunate</td>
<td>Anti-malaria drug</td>
<td>No withdrawn, suspended or terminated studies found</td>
</tr>
</tbody>
</table>

3.1 Remdesivir (Veklury®)

The reader is referred to the earlier version (V13_April) for more details on remdesivir (Veklury).

PRAC: Sinusbradykardie

3.2 Lopinavir + Ritonavir (Kaletra®)

Due to the lack of effectiveness of lopinavir/ritonavir in treating adults hospitalized with COVID-19 patients and the decisions to stop enrolling participants to the lopinavir/ritonavir (Kaletra) arms of the RECOVERY, SOLIDARITY and DISCOVERY studies in adults hospitalized with COVID-19, our reporting related to lopinavir/ritonavir was stopped also.

Last reporting V6/September 2020:

3.3 Favipiravir (Avigan®)

About the drug under consideration

Favipiravir (Avigan®), an antiviral drug, is a new type of RNA-dependent RNA polymerase (RdRp) inhibitor [84, 85].

Favipiravir (Avigan®) has not been approved by the European Medicines Agency (EMA) or the American Food and Drug Administration (FDA) for COVID-19.

Details in V13_April

wegen erwiesenem Mangel an Wirksamkeit wurde Beobachtung beendet
The US COVID-19 Treatment Guidelines Panel recommends against using the Lopinavir/ritonavir (AII) or other HIV protease inhibitors (AIII), except in a clinical trial, because of unfavorable pharmacodynamics and because clinical trials have not demonstrated a clinical benefit in patients with COVID-19 [86].

Withdrawn, suspended or terminated studies

No withdrawn or terminated RCTs were found; 1 suspended (NCT04613271, potentially will resume, protocol will be amended) was found in Indonesia, in two clinical trial registers (ClinicalTrials.gov and EUdraCT).

Results of publications

Chen C et al. 2020 [87] published results (as preprint) on a RCT (ChiCTR2000030254) related to efficacy and safety of favipiravir, in comparison with umifenovir. Summary of findings table on favipiravir compared to umifenovir (1 RCT: Chen) is presented in Table 3.1.

Lou Y et al. 2020, published as preprint results of exploratory RCT with 3 arms (ChiCTR2000029544) [88] related to the efficacy and safety of favipiravir in comparison with baloxavir marboxil, and lopinavir + ritonavir or darunavir/cobicistat + umifenovir + interferon-a in hospitalized adult patients with COVID-19. The percentage of patients who turned viral negative after 14-day treatment was 70%, 77%, and 100% in the baloxavir, favipiravir, and control group respectively, with the medians of time from randomization to clinical improvement was 14, 14 and 15 days, respectively.

Summary of findings table on favipiravir compared to baloxavir marboxil is presented in Table 3.2 and favipiravir compared to lopinavir + ritonavir or darunavir/cobicistat + umifenovir + interferon-a (1 RCT: Lou 2020) [69] is presented in Table 3.3.

Interim results from an adaptive, multicenter, open label, randomized, phase 2/3 clinical trial (NCT04434248) of favipiravir (AVIFAVIR) versus standard of care (SOC) in 60 hospitalized patients with moderate COVID-19 pneumonia were published (three treatment groups: AVIFAVIR 1600/600 mg, AVIFAVIR 1800/800 mg, or SOC). AVIFAVIR enabled SARS-CoV-2 viral clearance in 62.5% of patients within 4 days, and was safe and well tolerated. Based on these interim results, the Russian Ministry of Health granted a conditional marketing authorization to AVIFAVIR, which makes it the only approved oral drug for treatment of moderate COVID-19 to date [89].

Dabbous et al. 2020 published results, as preprint, from open-label, phase 3 RCT, comparing favipiravir vs standard care (hydroxychloroquine plus oseltamivir) in 100 patients with mild to moderate COVID-19 in Egypt (NCT04349241) [90]. No statistically significant difference was found related to time to PCR negativity (p=0.7). Four patients in favipiravir group had increase in liver transaminase, and 20 patients in standard care group (hydroxychloroquine plus oseltamivir) developed heart burn and nausea. One patient died in hydroxychloroquine plus oseltamivir group after acute myocarditis resulted in acute heart failure.
Balykova et al. 2020 [91] published results from a RCT in 200 hospitalised patients with COVID-19 showed a significant advantage of favipiravir therapy compared with standard therapy intermediate of the rate of improvement in clinical status (on average by 4 days), the speed and frequency of recovery on the 10 day of therapy (no clinical signs of the disease in the study and control groups were observed in 44 and 10% of patients, respectively), the frequency of achieving the viral clearance on the 10th day of therapy (98 and 78% in the study and control groups, respectively) (p=0.00003). Favipiravir therapy was accompanied by a significant improvement in lung condition according to CT data, improved laboratory parameters and normalization of oxygen saturation levels. Favipiravir therapy was characterized by a favorable safety profile. In the main group, no aggravation of the course of the disease or serious adverse events related to the drug were recorded.

Ruzhentsova et al. 2020 [92] published results as preprint from open-labeled, randomized, active-controlled multicenter trial (NCT04501783) of an oral dosage form of favipiravir in out- and hospitalized patients with mild to moderate COVID-19 in 10 clinical centers in Russia. 190 Patients were randomly assigned (in a 2:1 ratio) to receive either favipiravir (1800 mg BID on day 1, followed by 800 mg BID for up to 9 days), or standard of care (SOC) treatment (umifenovir + intranasal interferon alpha-2b, or hydroxychloroquine) for up to 10 days. The median time to clinical improvement was 6.0 (IQR 4.0; 9.3) days in favipiravir group and 10.0 (IQR 5.0; 21.0) days in SOC group; the median difference was 4 days (HR 1.63; 95% CI 1.14-2.34, p=0.007). The statistically significant difference in the median time to viral clearance was observed only in the hospitalized cohort of patients: 3.0 (IQR 3.0; 3.0) vs. 5.0 (IQR 4.5; 5.5), respectively (HR 2.11; 95% CI 1.04-4.31; p = 0.038). However, the rate of viral elimination on Day 5 in the favipiravir group was significantly higher in the whole population: 81.2% vs. 67.9% respectively (RR 1.22; 95% CI 1.00-1.48; p = 0.022). The rate of clinical improvement on Day 7 in the favipiravir group was 1.5-fold higher compared to SOC: 52.7% vs. 35.8% (RR 1.50; 95% CI 1.04-2.22; p = 0.020). Favipiravir was well tolerated: most of the adverse events (AE) were mild. Any AEs were reported in 74.1% of patients in the favipiravir group vs. 60.0% in the SOC group; the most common adverse reactions were asymptomatic hyperuricemia, transient elevation of ALT & AST, and gastrointestinal disorders (diarrhea, nausea, abdominal pain).

Udwadia et al. 2020 [93] published results from randomized, open-label, parallel-arm multicenter, phase 3 trial (CTRI/2020/05/025114), in adults with mild to moderate COVID-19 in India. 150 patients were randomized to favipiravir (n=75) or control (n=75). Median time to cessation of viral shedding was 5 days (95% CI: 4 days, 7 days) versus 7 days (95% CI: 5 days, 8 days), p=0.129, and median time to clinical cure was 3 days (95% CI: 3 days, 4 days) versus 5 days (95% CI: 4 days, 6 days), p=0.030, for favipiravir and control respectively. Adverse events were observed in 36% of favipiravir and 8% of control patients. One control patient died due to worsening disease.

Solaymani-Dodaran et al. 2021 [94] published negative results from multicenter randomized open-labeled clinical trial on moderate to severe cases infections of SARS-CoV-2. 380 patients were randomly allocated into favipiravir (193) and lopinavir/ritonavir (187) groups in 13 centers. The number of deaths, intubations, and ICU admissions were not significantly different (26, 27, 31 and 21, 17, 25 respectively). Mean hospital stay was also not different (7.9 days [SD=6] in the Favipiravir and 8.1 [SD=6.5] days in Lopinavir/Ritonavir groups) (p=0.61). Time to clinical recovery in the Favipiravir group was similar to Lopinavir/Ritonavir group (HR=0.94, 95% CI 0.75 – 1.17) and likewise the changes in the daily SpO2 after discontinuation of
Results: Therapeutics

Supplemental oxygen (p=0.46). Adding Favipiravir to the treatment protocol did not reduce the number of ICU admissions or intubations or in-hospital mortality compared to Lopinavir/Ritonavir regimen. It also did not shorten time to clinical recovery and length of hospital stay.

Zhao et al. 2021 [95] published results from multicenter, open-label, randomized controlled trial in SARS-CoV-2 RNA re-positive patients (NCT0433589). Patients were randomly assigned in a 2:1 ratio to receive either favipiravir in addition to standard care, or standard care alone. The primary outcome was time to achieve a consecutive twice (at intervals of more than 24 h) negative RT-PCR result for SARS-CoV-2 RNA in nasopharyngeal swab and sputum sample. 55 patients underwent randomization; 36 were assigned to the favipiravir group and 19 were assigned to the control group. Favipiravir group had a significantly shorter time from start of study treatment to negative nasopharyngeal swab and sputum than control group (median 17 vs. 26 days); hazard ratio 2.1 (95% CI [1.1-4.0], p=0.038). The proportion of virus shedding in favipiravir group was higher than control group (80.6% [29/36] vs. 52.6% [10/19], p=0.030, respectively). Creatine protein decreased significantly after treatment in the favipiravir group (p=0.016). The adverse events were generally mild and self-limited.

Data related to Summary of findings table on favipiravir compared to standard care (6 RCTs: Lou 2020, Iavshchenko 2020, Dabbous 2020, Balykova 2020, Ruzhen'tsova 2020, Udwadia 2020) could be found in Table 3.3-4 below. Based on currently available evidence, favipiravir may not increase the incidence of Clinical improvement (D28) (6 RCTs, RR 1.02, 95% CI 0.95 to 1.09, low certainty of evidence). The evidence is very uncertain about the effect of favipiravir on All-cause mortality (D28) (RR 0.33, 95%CI 0.04 to 3.16, 4 RCTs, very low certainty of evidence); Viral negative conversion (D7) (RR 1.10, 95%CI 0.96 to 1.27, 6 RCTs, low certainty of evidence); Adverse events (RR 1.54, 95%CI 0.87 to 2.75, 4 RCTs, very low certainty of evidence) and Serious adverse events (RR 1.20, 95%CI 0.48 to 3.00, 4 RCTs, very low certainty of evidence).

Doi et al. 2020 published results from RCT (Japan Registry of Clinical Trials jRCTs041190120), related to early versus late favipiravir in hospitalized patients with COVID-19 [96]. 88 patients were randomly assigned at a 1:1 ratio to early or late favipiravir therapy (the same regimen starting on day 6 instead of day 1). Viral clearance occurred within 6 days in 66.7% and 56.1% of the early and late treatment groups (adjusted hazard ratio [aHR], 1.42; 95% confidence interval [95% CI], 0.76–2.62). Of 30 patients who had a fever (≥37.5°C) on day 1, time to defeverescence was 2.1 days and 3.2 days in the early and late treatment groups (aHR, 1.88; 95%CI, 0.81–4.35). During therapy, 84.1% developed transient hyperuricemia. Neither disease progression nor death occurred to any of the patients in either treatment group during the 28-day participation.

Zhao H et al. 2020. published results from RCT in moderate to critical COVID-19 patients in China, comparing favipiravir to tocilizumab and favipiravir plus tocilizumab (ChiCTR2000030096, NCT04310228) [97]. Patients were randomly assigned (3:1:1) to a 14-day combination of favipiravir combined with tocilizumab (combination group), favipiravir, and tocilizumab. The cumulative lung lesion regression rate at day 14 was significantly higher in the combination group as compared with favipiravir group (p = 0.019, HR 2.66 95% CI [1.08 to 6.53]); a significant difference between tocilizumab and favipiravir found also (p = 0.034, HR 3.16, 95% CI 0.62 to 16.10). There was no significant difference between the combination group and the tocilizumab group (p = 0.575, HR 1.28 95%CI 0.39 to 4.23). Combined therapy can also significantly relieve clinical symptoms and help blood routine to return to normal. No serious adverse events were reported.

Zusammenfassung von 6 RCTs
ev. Effekte auf klinische Verbesserung
Mortalität

Okt 2020: RCT mit 89 Pts.
Japan
Vergleich von früher und später Favipiravir Therapie bei hospitalisierten Pts.
kein Unterschied
Dabbous et al. 2021 published results from a multi-center, randomized, interventional phase 2/3 study that included 96 mild to moderate COVID-19 patients with confirmed SARS-CoV-2 infection (NCT04351295) [98]. 96 patients were randomly assigned into two groups. The chloroquine (CQ) group included 48 patients who received chloroquine 600 mg tablets twice daily added to the standard-of-care therapy for 10 days. The favipiravir group included 48 patients who received 1600 mg of favipiravir twice a day on the first day and 600 mg twice a day from the second to tenth day, added to the standard-of-care therapy for 10 days. No significant differences were observed regarding duration of hospital stay, need of mechanical ventilation, side effects. Two patients (4.2%) in the CQ group and one (2.3%) in the favipiravir group died (p=1.00).
Table 3.3-1: Summary of findings table on **favipiravir compared to umifenovir** (1 RCT: Chen) - https://covi-nma.com/living_data/index.php

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>Ns of participants (Studie)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risk with Umifenovir</td>
<td>Risk with Favipiravir</td>
<td>RR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence viral negative conversion D7 - not reported</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>outcome not yet measured or reported</td>
</tr>
<tr>
<td>Clinical improvement - not reported</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>outcome not yet measured or reported</td>
</tr>
<tr>
<td>Incidence of clinical recovery D7</td>
<td>517 per 1,000 (470 to 744)</td>
<td>594 per 1,000 (492 to 744)</td>
<td>RR 1.15 (0.91 to 1.44)</td>
<td>240 (1 RCT)</td>
<td>BBBBB VERY LOW ab,bc</td>
</tr>
<tr>
<td>Incidence of WHO progression score (level 6 or above) - not reported</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>outcome not yet measured or reported</td>
</tr>
<tr>
<td>Incidence of WHO progression score (level 7 or above) - not reported</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>outcome not yet measured or reported</td>
</tr>
<tr>
<td>All-cause mortality D7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>BBBBB VERY LOW ab,de</td>
</tr>
<tr>
<td>Adverse events D7</td>
<td>275 per 1,000 (245 to 528)</td>
<td>358 per 1,000 (292 to 538)</td>
<td>RR 1.30 (0.89 to 1.90)</td>
<td>240 (1 RCT)</td>
<td>BBBBB LOW ab,de</td>
</tr>
</tbody>
</table>
Results: Therapeutics

| Serious adverse events D7 | 240 | ☒| ☒| zero events in both groups |

*(The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI)).

C: Confidence interval; RR: Risk ratio

GRADE Working Group grades of evidence

High certainty: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Explanations

a. Risk of bias downgraded by 1 level: some concerns or high risk regarding adequate randomization, deviations from intended interventions and outcome measurement

b. Indirectness downgraded by 1 level: single study from a single country, therefore results in this population might not be generalizable to other settings

c. Imprecision downgraded by 1 level: due to wide confidence interval consistent with the possibility for benefit and the possibility for harm and low number of participants

d. Imprecision downgraded by 2 levels: no events in both groups and low number of participants

e. Risk of bias downgraded by 1 level: some concerns regarding adequate randomization and deviations from intended interventions

f. We presume that the adverse event rates, and the corresponding relative risks, is similar across diverse settings; therefore not downgraded for indirectness
Table 3.3-2: Summary of findings table on favipiravir compared to baloxavir marboxil (1 RCT: Lou 2020) [69] - https://covid-nma.com/living_data/index.php

Favipiravir compared to Baloxavir marboxil for Mild/COVID-19

Patient or population: Mild/COVID-19
Setting: Worldwide
Intervention: Favipiravir
Comparison: Baloxavir marboxil

| GRADE Working Group grades of evidence: High certainty: We are very confident that the true effect lies close to that of the estimate of the effect; Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different; Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; Very low certainty: We have very little confidence in the estimate: The true effect is likely to be substantially different from the estimate of effect |

| Explanations: a. Risk of bias downgraded by 1 level: some concerns regarding adequate randomization, deviations from intended interventions and selection of the reported results; b. Indirectness downgraded by 1 level: single study from a single institution, therefore results in this population might not be generalizable to other settings; c. Imprecision downgraded by 2 levels: due to very wide confidence interval consistent with the possibility for benefit and the possibility for harm and very low number of participants; d. Risk of bias downgraded by 1 level: some concerns regarding adequate randomization, deviations from intended interventions, measurement of the outcome and selection of the reported results; e. Imprecision downgraded by 2 levels: no events in both groups and very low number of participants; f. Indirectness not downgraded: we presume that adverse event rate is not specific to a certain setting; g. Imprecision downgraded by 1 level: due to wide confidence interval consistent with the possibility for benefit and the possibility for harm and very low number of participants |

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects</th>
<th>Relative effect</th>
<th>No of participants (events)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risk with Baloxavir marboxil</td>
<td>Risk with Favipiravir</td>
<td>RR (95% CI)</td>
<td>(95% CI)</td>
<td></td>
</tr>
<tr>
<td>Incidence viral negative conversion D7</td>
<td>600 per 1.000</td>
<td>402 per 1.000 (162 to 996)</td>
<td>RR 0.67 (0.27 to 1.66)</td>
<td>20 (1 RCT)</td>
<td>VERY LOW b,d,e</td>
</tr>
<tr>
<td>Incidence clinical Improvement D7</td>
<td>100 per 1.000</td>
<td>200 per 1.000 (21 to 1.000)</td>
<td>RR 2.00 (0.21 to 18.69)</td>
<td>20 (1 RCT)</td>
<td>VERY LOW b,d,e</td>
</tr>
<tr>
<td>Incidence clinical Improvement D14-D28</td>
<td>600 per 1.000</td>
<td>498 per 1.000 (222 to 1.000)</td>
<td>RR 0.83 (0.37 to 1.85)</td>
<td>20 (1 RCT)</td>
<td>VERY LOW b,d,e</td>
</tr>
<tr>
<td>Incidence of WHO progression score (Level 6 or above D14-D28)</td>
<td>100 per 1.000</td>
<td>33 per 1.000 (2 to 722)</td>
<td>RR 0.33 (0.02 to 7.22)</td>
<td>20 (1 RCT)</td>
<td>VERY LOW b,d,e</td>
</tr>
<tr>
<td>Incidence of WHO progression score (Level 7 or above D14-D28)</td>
<td>100 per 1.000</td>
<td>33 per 1.000 (2 to 722)</td>
<td>RR 0.33 (0.02 to 7.22)</td>
<td>20 (1 RCT)</td>
<td>VERY LOW b,d,e</td>
</tr>
<tr>
<td>All-case mortality D7</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>All-case mortality D14-D28</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Adverse events - not reported</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Serious adverse events D14-D28</td>
<td>600 per 1.000</td>
<td>402 per 1.000 (162 to 996)</td>
<td>RR 0.87 (0.27 to 1.66)</td>
<td>20 (1 RCT)</td>
<td>VERY LOW b,d,e</td>
</tr>
</tbody>
</table>

The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).
Table 3.3: Summary of findings table on favipiravir compared to lopinavir or darunavir/cobicistat + umifenovir + interferon-a (1 RCT: Lou 2020) [69] - https://covid-nma.com/living_data/index.php

Favipiravir compared to Lopinavir + Ritonavir or Darunavir/Cobicistat + Umifenovir + Interferon-a for Mild/COVID-19

Patient or population: Mild/COVID-19
Setting: Worldwide
Intervention: Favipiravir
Comparison: Lopinavir + Ritonavir or Darunavir/Cobicistat + Umifenovir + Interferon-a

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of participants (studies)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
</table>
| Incidence viral negative conversion D⁷ | 500 per 1,000 (336 to 1,000) | RR 0.80 (0.30 to 2.13) | 20 | Very-low | GRADE Working Group grades of evidence: High certainty: We are very confident that the true effect lies close to that of the estimate of the effect; Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different; Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect
| Incidence clinical improvement D⁷ | 100 per 1,000 (21 to 1,000) | RR 2.00 (0.51 to 8.69) | 20 | Very-low | GRADE Working Group grades of evidence: High certainty: We are very confident that the true effect lies close to that of the estimate of the effect; Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different; Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect
| Incidence clinical improvement D14-D28 | 500 per 1,000 (210 to 1,000) | RR 1.00 (0.42 to 2.40) | 20 | Very-low | GRADE Working Group grades of evidence: High certainty: We are very confident that the true effect lies close to that of the estimate of the effect; Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different; Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect
| Incidence of WHO progression score (level 6 or above D14-D28) | 20 (1 RCT) | RR 0.50 (0.20 to 1.30) | 20 | Very-low | GRADE Working Group grades of evidence: High certainty: We are very confident that the true effect lies close to that of the estimate of the effect; Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different; Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect
| Incidence of WHO progression score (level 7 or above D14-D28) | 20 (1 RCT) | RR 0.50 (0.20 to 1.30) | 20 | Very-low | GRADE Working Group grades of evidence: High certainty: We are very confident that the true effect lies close to that of the estimate of the effect; Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different; Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect
| All-case mortality D⁷ | 20 (1 RCT) | RR 0.00 (0.00 to 0.00) | 20 | Very-low | GRADE Working Group grades of evidence: High certainty: We are very confident that the true effect lies close to that of the estimate of the effect; Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different; Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect
| All-case mortality D14-D28 | 20 (1 RCT) | RR 0.00 (0.00 to 0.00) | 20 | Very-low | GRADE Working Group grades of evidence: High certainty: We are very confident that the true effect lies close to that of the estimate of the effect; Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different; Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect
| Adverse events - not reported | - | - | - | Low certainty | GRADE Working Group grades of evidence: High certainty: We are very confident that the true effect lies close to that of the estimate of the effect; Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different; Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect
| Serious adverse events D14-D28 | 400 per 1,000 (136 to 1,000) | RR 1.00 (0.34 to 2.93) | 20 | Low certainty | GRADE Working Group grades of evidence: High certainty: We are very confident that the true effect lies close to that of the estimate of the effect; Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different; Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

Favipiravir compared to Standard care for Mild/Moderate/Unclear COVID-19

Patient or population: Mild/Moderate/Unclear COVID-19
Setting: Worldwide
Intervention: Favipiravir
Comparison: Standard care

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>No. of events</th>
<th>Anticipated absolute effect</th>
<th>Risk with Standard care</th>
<th>Risk with Favipiravir</th>
<th>Relative effect</th>
<th>No. of patients (study)</th>
<th>Grade of evidence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Risk with Standard care</td>
<td>Risk with Favipiravir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viral clearance, CT</td>
<td>385 per 1330</td>
<td>723 per 1389 (64 to 949)</td>
<td>0.48 (95% CI: 0.39 to 0.57)</td>
<td>0.48 (95% CI: 0.39 to 0.57)</td>
<td>1.00</td>
<td>485</td>
<td>B</td>
<td>Low (10)</td>
</tr>
<tr>
<td>Clinical improvement ≥50%</td>
<td>322 per 1350</td>
<td>569 per 1389 (240 to 1011)</td>
<td>0.37 (95% CI: 0.22 to 0.59)</td>
<td>0.37 (95% CI: 0.22 to 0.59)</td>
<td>1.00</td>
<td>322</td>
<td>B</td>
<td>Low (10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). CI: Confidence interval; RR: Risk ratio.

GRADE Working Group grades of evidence: High certainty: We are very confident that the true effect lies close to that of the estimate of the effect. Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different:Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect:Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

3.4 Darunavir

About the drug under consideration

Darunavir is an antiviral agent from the group of human immunodeficiency virus (HIV) protease inhibitors for the treatment of HIV-1 infections. Darunavir is combined with a pharmacokinetic booster such as ritonavir or cobicistat [99].

Darunavir (Prezista®) has not been approved by the European Medicines Agency (EMA) or the American Food and Drug Administration (FDA) for COVID-19.

The US COVID-19 Treatment Guidelines Panel recommends against using the Lopinavir/ritonavir (AI) or other HIV protease inhibitors (AIPI), except in a clinical trial, because of unfavorable pharmacodynamics and because clinical trials have not demonstrated a clinical benefit in patients with COVID-19 [86].

Withdrawn, suspended or terminated studies

The search in two clinical trial registers (ClinicalTrials.gov and EUDRACT) yielded no suspended, withdrawn or terminated RCTs in COVID-19.

Results of publications

Chen J et al. 2020 [100] published results from single-center, randomized, open-label trial (NCT04252274) which aimed to evaluate the antiviral activity and safety of darunavir/cobicistat (DRV/c) in treating mild COVID-19 patients. Participants were randomized to receive DRV/c for 5 days on the top of interferon alpha 2b inhalation or interferon alpha 2b inhalation alone. DRV/c did not increase the proportion of negative conversion vs standard of care alone; the proportion of negative PCR results at day 7 was 46.7% (7/15) and 60.0% (9/15) in the DRV/c and control groups (p=0.72), respectively. The viral clearance rate at day 3 was 20% (3/15) in both study groups, while the number increased to 26.7% (4/15) in the DRV/c group and remained 20% (3/15) in the control group at day 5. Fourteen days after randomization, 1 participant in the DRV/c group progressed to a critical illness and discontinued DRV/c, while all the patients in the control group were stable (p=1.0). The frequencies of adverse events in the two groups were comparable. The findings are presented in Table 3.4-1.
Table 3.4-1: Summary of findings table on darunavir/cobicistat compared to standard care (1 RCT: Chen J) - https://covid-nma.com/living_data/index.php [100]

Darunavir/cobicistat compared to Standard Care for Moderate COVID-19

Patient or population: Moderate COVID-19
Setting: Worldwide
Intervention: Darunavir/cobicistat
Comparison: Standard Care

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>% of participants (studies)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence of viral negative conversion D7</td>
<td>468 per 1,000 (234 to 924)</td>
<td>RR 0.79 (0.39 to 1.54)</td>
<td>30 (1 RCT)</td>
<td>VERY LOW a,b,c</td>
<td></td>
</tr>
<tr>
<td>Clinical improvement - not reported</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Clinical recovery - not reported</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>WHO progression score (level 0 or above) - not reported</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>WHO progression score (level 7 or above D7)</td>
<td>9 per 1,000 (0 to 0)</td>
<td>RR 3.00 (0.13 to 68.26)</td>
<td>30 (1 RCT)</td>
<td>VERY LOW a,b,d</td>
<td></td>
</tr>
<tr>
<td>All-cause mortality D14-D28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Adverse events - not reported</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Serious adverse events D14-D28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

GRADE Working Group grades of evidence: **High certainty:** We are very confident that the true effect lies close to that of the estimate of the effect; **Moderate certainty:** We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different; **Low certainty:** Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; **Very low certainty:** We have very little confidence in the estimate of the effect: The true effect is likely to be substantially different from the estimate of effect.

Explanations:
a. Risk of bias downgraded by 1 level: some concerns or high risk due to concerns during the randomization process, deviations from intended interventions and selection of the reported results;
b. Indirectness downgraded by 1 level: single study from a single institution, therefore results in this population might not be generalizable to other settings;
c. Imprecision downgraded by 2 levels: due to very wide confidence interval consistent with the possibility for benefit and the possibility for harm and very low number of participants;
d. Imprecision downgraded by 2 levels: due to very wide confidence interval consistent with the possibility for benefit and the possibility for harm and very low number of participants;
e. Imprecision downgraded by 2 levels: no events in both groups and very low number of participants;
f. Risk of bias downgraded by 2 levels: some concerns or high risk due to concerns during the randomization process, deviation from intended intervention, missing data and selection of reported results;
g. We presume that the adverse event rates, and the corresponding relative risks, is similar across diverse settings, therefore not downgraded for indirectness.
Due to the lack of effectiveness of chloroquine and hydroxychloroquine in treating COVID-19 patients; in the light of serious adverse effects as well as the decisions to stop enrolling participants to the hydroxychloroquine arm of the RECOVERY and SOLIDARITY trials, the reporting related to these two pharmaceuticals was stopped also.

Last reporting V4/ July:
https://eprints.ait.ac.at/1234/10/Policy_Brief_002_Update_07.2020.pdf

3.7 Camostat Mesilate (Foipan®)

About the drug under consideration

Camostat Mesilate (Foipan®) is classified as a so-called serine protease inhibitor, blocking several pancreatic and plasmin enzymes like trypsin, thrombin, and plasmin [101]. Studies showed effects on the cell-entry mechanism of coronaviruses (e.g. SARS-CoV and SARS-CoV-2) in vivo and in vitro human cells [102, 103] as well as in pathogenic mouse models [104] by inhibiting the enzyme Transmembrane protease, serine 2 (TMPRSS2).

Camostat Mesilate (Foipan®) is not approved for any anti-viral use (FDA, EMA).

It is one of the drugs for which the German Federal Ministry of Health initiated central procurement in April 2020 for the treatment of infected and seriously ill COVID-19 patients in Germany (https://www.abda.de). Up to August 1, 2020, 35 to 60 Covid-19 patients have been treated with the centrally procured medicinal product Foipan (Camostat) as part of an individual medical treatment. There was no obligation for the treating physicians to collect data in a registry [105].

Withdrawn, suspended or terminated studies

One withdrawn RCT was found (NCT04338906) related to combination therapy camostat + hydroxychloroquine because hydroxychloroquine not being standard of care anymore); no suspended or terminated studies were found in ClinicalTrials.gov and EUDRA CT registers.

Results of publications

One scientific publication on a RCT of Camostat Mesilate (Foipan®) in Covid-19 patients is currently identified. Gunst et al. 2021 [106] published results from investigator-initiated, double-blind, randomized, placebo-controlled multicenter trial in patients hospitalized with confirmed SARS-CoV-2 infection (NCT04321096, EudraCT 2020-001200-42). Within 48 h of admission, 205 participants were randomly assigned in a 2:1 ratio to receive camostat mesilate 200 mg three times daily for 5 days or placebo. The primary outcome was time to discharge or clinical
improvement measured as ≥2 points on a 7-point ordinal scale. Other outcomes included 30-day mortality, safety and change in oropharyngeal viral load. 137 patients were assigned to receive camostat mesilate and 68 to placebo. Median time to clinical improvement was 5 days (interquartile range [IQR], 3 to 7) in the camostat group and 5 days (IQR, 2 to 10) in the placebo group (p = 0.31). The hazard ratio for 30-day mortality in the camostat compared with the placebo group was 0.82 (95% confidence interval [CI], 0.24 to 2.79; p=0.75). The frequency of adverse events was similar in the two groups. Median change in viral load from baseline to day 5 in the camostat group was -0.22 log\(_{10}\) copies/mL (p<0.05) and -0.82 log\(_{10}\) in the placebo group (p<0.05).

3.8 APN01/ Recombinant Human Angiotensin-converting Enzyme 2 (rhACE2)

Drug under consideration

APN01 (alunacedase alfa) is a recombinant human Angiotensin Converting Enzyme 2 (rhACE2) developed by Apeiron Biologics under Phase 2 clinical development in ALI (Acute Lung Injury) and PAH (Pulmonary arterial hypertension) [107], [108], [109].

The therapy with APN01 is currently not approved by the European Medicine Agency (EMA) and Food and Drug Administration (FDA) for COVID-19.

Withdrawn, suspended or terminated studies

One RCT number NCT04287686 is visible as withdrawn (without CDE Approval).

Results of publications

No relevant finished publications or finished trials assessing the efficacy and safety could be identified. First results, related to a phase 2/3 study of hrsACE2 in 178 hospitalised patients with severe COVID-19, with primary composite outcome – All-cause mortality or invasive mechanical ventilation are recently announced (NCT04335136). Both groups, APN01 (n=88) and placebo (n=90), also additionally received standard of care (SOC). Patients received treatment for 7 days with follow-ups until day 28. The data showed that fewer patients treated with APN01 (n=9) died or received invasive ventilation compared to placebo (n=12), although statistical significance was not achieved due to the low total number of events. The data demonstrated a statistically significant improvement in mechanical ventilator-free days in alive patients and reduction in viral load in the group treated with APN01 compared to placebo. APN01 also demonstrated a positive impact on key biomarkers of the renin angiotensin system (RAS), demonstrating in vivo efficacy of the drug. Treatment with APN01 was safe and well tolerated and no drug-related severe adverse events were observed during the study.

In addition, APEIRON was invited to participate in the US ACTIV-4 RAAS trial, part of Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV), initiated and funded by the National Heart Lung and Blood Institute (NHLBI), part of the United States’ National Institutes of Health (NIH). APN01 was prioritized for study by a broad panel of clinical trial experts through the Collaborative Network of Networks for Evaluating aus SARS-Forschung hervorgegangen
keine Zulassung
1 Studie (Phase2 RCT), vor Rekrutierung

in ClinicalTrials.gov and EUDraCT keine abgeschlossene, aber eine zurückgezogene Studie registriert

Phase 2/3 RCT
178 Pt.
hospitalisiert, schwere Erkrankung
besser bei beatmungsfreien Tagen

APN01 in ACTIV-4
Plattform Studie aufgenommen

In parallel to the US clinical trial with APN01 as intravenous application, APEIRON is preparing a company-sponsored phase 1 trial to evaluate drug delivery of APN01 through inhalation in order to target all infected or at-risk patients earlier in the course of the disease. Preliminary data from ongoing evaluations with inhalation of ACE2 based therapeutics show high efficacy in SARS-CoV-2 animal models.

3.9 Tocilizumab (Roactemra®)

The reader is referred to the earlier version (V14_May 2021) for more details on tocilizumab (RoActemra).

3.10 Sarilumab (Kevzara®)

Drug under consideration

Sarilumab (Kevzara) is a human monoclonal antibody that specifically binds to soluble and membrane-bound interleukin (IL)-6 receptors (IL-6Rα), and inhibits IL-6-mediated signalling [126]. It is being investigated as a possible treatment for patients with moderate to severe or critical COVID-19. The therapy is currently not approved by the European Medicine Agency (EMA) and Food and Drug Administration (FDA) for COVID-19.

The US COVID-19 Treatment Guidelines Panel Statement (April 21, 2021) [86]: There are insufficient data for the Panel to recommend either for or against the use of sarilumab for hospitalized patients with COVID-19 who are within 24 hours of admission to the ICU and who require invasive mechanical ventilation, non-invasive ventilation, or high-flow oxygen (>0.4 FIO2/30 L/min of oxygen flow).

Withdrawn, suspended or terminated studies

One RCT found as suspended, NCT04341870 - CORIMUNO-VIRO Trial (DSMB recommendation [utility]). One RCT found as terminated, NCT04322773 (TOCIVID) in Denmark, due to changed clinical conditions and too few patients available.

Phase 1 Study

Erprobung von APN01 als Inhalation

Interleukin-6-Rezeptor für rheuma toide Arthritis zugelassen (EMA)

Covid-10: bei erhöhten IL-6-Spiegeln

US COVID-19 Treatment Guidelines Panel insuffiziente Datenlage für/gegen Empfehlung
Results of publications

On July 03, 2020 in press release related to sari lumab RCT conducted in US, https://www.clinicaltrialsarena.com/news/kevzara-us-covi-d19-trial-data/, Sanofi and Regeneron Pharmaceuticals have reported that this phase III clinical trial of sari lumab, compared 400 mg dose of the drug plus best supportive care to best supportive care alone, failed to meet its primary and key secondary endpoints in 194 critically ill Covid-19 patients who required mechanical ventilation in the US. In the primary analysis of adverse events were reported in 80% of patients treated with sari lumab and 77% of those on placebo. Serious adverse events in at least 3% of patients, more frequent among sari lumab patients, were multi-organ dysfunction syndrome and hypotension. Based on the data, the companies have halted this US-based trial, including a second cohort of patients who were on a higher 800 mg dose of the drug. The trial being conducted outside of the US was continuing, in hospitalised patients with severe and critical Covid-19 using a different dosing regimen, with published negative results in March 2021 by Lescure et al. (NCT04327388, EudraCT 2020-001162-12) [127] 420 patients were randomly assigned and 416 received placebo (n=84 [20%]), sari lumab 200 mg (n=159 [38%]), or sari lumab 400 mg (n=173 [42%]). At day 29, no significant differences were seen in median time to improvement of two or more points between placebo (12.0 days [95% CI 10.0 to 15.0]) and sari lumab 200 mg (10.0 days [9.0 to 12.0]); hazard ratio [HR] 1.37 [95% CI 0.75 to 2.51]; log-rank p=0.34), or in proportions of patients alive (67 [92%] of 84 patients in the placebo group; 143 [90%] of 159 patients in the sari lumab 200 mg group; difference =-17 [-32 to 3]; p=0.34 vs placebo). As day 29, there were no numerical, non-significant survival differences between sari lumab 400 mg (88%) and placebo (79%; difference =+9% [95% CI −7 to 25]; p=0.25) for patients with critical disease. No unexpected safety signals were seen. The rates of treatment-emergent adverse events were 65% (55 of 84) in the placebo group, 65% (103 of 159) in the sari lumab 200 mg group, and 70% (121 of 173) in the sari lumab 400 mg group, and of those leading to death 11% (nine of 84) were in the placebo group, 11% (17 of 159) were in the sari lumab 200 mg group, and 10% (18 of 173) were in the sari lamab 400 mg group.

As already described in Tocilizumab Section above, Gordon et al. 2021 [118](REMAP-CAP, NCT02735707) published preliminary report as preprint, with positive results related to IL-6 receptor or antagonist, tocilizumab and sari lumab, to improve outcome, including survival, in critical COVID-19 patients who were randomised to tocilizumab (8 mg/kg) or sari lumab (400 mg) or standard care (control). At the time of full analysis 353 patients had been assigned to tocilizumab, 48 to sari lumab and 402 to control. Median organ support-free days were 11 (IQR 0, 16) sari lumab and 0 (IQR -1, 15) for control. Relative to control, median adjusted odds ratio was 1.76 (95%CI 1.17, 2.91) for sari lumab, compared with control. Hospital mortality was 22.2% (10/45) for sari lumab and 35.8% (142/397) for control. All secondary outcomes and analyses supported efficacy of these IL-6 receptor or antagonists. There were no serious adverse events in the sari lamab group.

Summary of finding table 3.10-1, related to these two RCTs mentioned above can be found below. In summary, sari lumab compared to standard care for severe/critical COVID-19 patients may not decrease All-cause mortality D28 (RR 0.77, 95% CI 0.43 to 1.36, 2 RCTs, low certainty of evidence) and may not increase SAEs (RR 1.17, 95% CI 0.77 to 1.77, 2 RCTs, low certainty of evidence). Sari lumab compared to standard care probably does not increase AEs (RR 1.05, 95% CI 0.88 to 1.25, 1 RCT; moderate certainty of evidence).
Sivapalasingam et al. 2021 [128] published as preprint results from an adaptive, phase 2/3, randomized, double-blind, placebo-controlled trial of intravenous sarilumab 200 mg or 400 mg in adults hospitalized with Covid-19 requiring supplemental oxygen and/or assisted ventilation (NCT04315298). The phase 3 primary analysis population (cohort 1) was patients with critical Covid-19 receiving mechanical ventilation (MV) randomized to sarilumab 400 mg or placebo. The primary endpoint for phase 3 was the proportion of patients with ≥1-point improvement in clinical status from baseline to day 22. 457 and 1365 patients were randomized and treated in phases 2 and 3, respectively. Among phase 3 critical patients receiving MV (n=289; 34.3% on corticosteroids), the proportion with ≥1-point improvement in clinical status (alive not receiving MV) at day 22 was 43.2% in sarilumab 400 mg and 35.5% in placebo (risk difference [RD] +7.5%; 95% confidence interval [CI], −7.4 to 21.3; p=0.3261), representing a relative improvement of 21.7%. Day 29 all-cause mortality was 36.4% in sarilumab 400 mg versus 41.9% in placebo (RD −5.5%; 95% CI, −20.2 to 8.7; relative risk reduction 13.3%). In post hoc analyses pooling phase 2 and 3 critical patients receiving MV, the hazard ratio (HR) for death in sarilumab 400 mg compared with placebo was 0.76 (95% CI, 0.51 to 1.13) overall, improving to 0.49 (95% CI, 0.25 to 0.94) in patients receiving corticosteroids at baseline.
Table 3.10.1: Summary of findings table on Sarilumab compared to Standard Care for Severe/Critical COVID-19 (2 RCTs: Gordon REMAP-CAP, Lescure)

Sarilumab compared to Standard Care for Severe/Critical COVID-19

Patient or population: Severe/Critical COVID-19
Setting: Worldwide
Intervention: Sarilumab
Comparison: Standard Care

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Risk with Standard Care</th>
<th>Risk with Sarilumab</th>
<th>N of participants (denominator)</th>
<th>GRADE Working Group grades of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality (255)</td>
<td>26% (n=1005)</td>
<td>22.5% (n=1005)</td>
<td>265</td>
<td>High certainty: We are very confident that the true effect lies close to that of the estimate of the effect; Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different; Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect</td>
</tr>
<tr>
<td>All-cause mortality w/ event</td>
<td>18.5% (n=1005)</td>
<td>18.5% (n=1005)</td>
<td>40.6 (2.20)</td>
<td>Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect</td>
</tr>
<tr>
<td>Adverse events (460)</td>
<td>35% (n=1005)</td>
<td>30% (n=1005)</td>
<td>380</td>
<td>Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect</td>
</tr>
<tr>
<td>Serious adverse events (62)</td>
<td>2.7% (n=1005)</td>
<td>2.7% (n=1005)</td>
<td>85</td>
<td>Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect</td>
</tr>
</tbody>
</table>

Explanations:
a. Last updated: 12 February, 2021; b. Lescure FX, 2021; Gordon AC, REMAP-CAP, 2021; c. Despite some concerns due to deviation from intended interventions, we did not downgrade for risk of bias; d. Imprecision downgraded by 2 levels: due to wide confidence interval consistent with the possibility for benefit and the possibility for harm and few events; e. Lescure FX, 2021; f. Despite some concerns due to selection of the reported result, we did not downgrade for risk of bias; g. We presume that the adverse event rates and the corresponding relative risks, are similar across diverse settings; therefore not downgraded for indirectness.; h. Imprecision downgraded by 1 level: few events
3.11 Interferon beta 1a (SNG001) (Rebif®, Avonex®) and Interferon beta 1b (Betaferon®, Extavia®)

About the drug under consideration

Interferon beta-la (INFβ) is a cytokine in the interferon family used to treat relapsing multiple sclerosis (MS). Finding of studies in patients with MERS-CoV have led to exploration of treatment with INFβ in COVID-19 [129].

Two pharmaceuticals which the active substance Interferon beta-la are commercially available: Rebif® and Avonex®. They are used to slow the progression of disability and reduce the number of relapses in MS. Rebif is approved by the European Medicines Agency (EMA) since 1998 and by the American Food and Drug Administration (FDA) since 2002. Avonex is approved by EMA since 1997 and by the FDA since 1996. Both drugs are approved for the treatment of relapsing forms of multiple sclerosis (MS), in cases of clinically isolated syndromes, as well as relapsing remitting disease, and active secondary progressive disease in adults.

Two pharmaceuticals, with the active substance Interferon beta-lb, are commercially available in EU: Betaferon® and Extavia® to treat adults with multiple sclerosis (MS) [130, 131]. Betaferon® is approved by the European Medicines Agency (EMA) since 1995. Extavia® is approved by EMA since 2008. Interferon beta-la and beta-lb are not approved for COVID-19 patients treatment.

The US COVID-19 Treatment Guidelines Panel [86] recommends against use of the interferons (alfa or beta) for the treatment of severely or critically ill patients with COVID-19, except in the context of a clinical trial (AIII).

There are insufficient data for the Panel to recommend either for or against the use of the Interferon-beta for the treatment of early (i.e., <7 days from symptom onset) mild and moderate COVID-19.

Withdrawn, suspended or terminated studies

One RCT was found as suspended, NCT04469491 (COV-NI), on interferon beta 1b by nebulization in France in anticipation for Data and Safety Monitoring Board. One RCT, on interferon beta la, was found as terminated (NCT04449380, INTERCOP) due to futility.

Results of publications

The results from the first randomised controlled trial on triple combination of interferon beta-1b, lopinavir-ritonavir and ribavirin, in comparison with lopinavir-ritonavir (NCT04276688) are presented in Section 3.14 of this report [132].

Results from Huang et al. 2020 (ChiCTR2000029387) [133] related to Ribavirin Plus Interferon-Alpha, Lopinavir/Ritonavir Plus Interferon-Alpha, and Ribavirin Plus Lopinavir/Ritonavir Plus Interferon-Alpha in Patients With Mild to Moderate COVID-19 were presented in Section 3.14 of this report.
Esquivel-Moyne et al. 2020 [134] presented the results from a RCT for efficacy and safety evaluation of subcutaneous IFN-α2b and IFNα1b administration in 79 patients positive to SARS-CoV-2. Patients were randomly assigned in a 1:1 ratio to receive either, subcutaneous treatment with a combination of 3.0 MIU IFN-α2b and 0.5 MIU IFN-α1b twice a week for two weeks, or thrice a week intramuscular injection of 3.0 MIU IFN-α2b. Additionally, all patients received lopinavir/ritonavir 200/50 mg every 12 h and chloroquine 250 mg every 12 h (standard of care). None of the patients developed severe COVID-19 during the study or the epidemiological follow-up for 21 more days.

Monk et al. 2020 published results from a randomised, double-blind, placebo-controlled, phase 2 pilot trial at nine UK sites (NCT04385095) [135]. 101 COVID-19 hospitalized adult patients were randomly assigned (1:1) to receive inhaled nebulised interferon beta-1a (SNG001) (6 MIU) or placebo by inhalation via a mouthpiece daily for 14 days. 66 (67%) patients required oxygen supplementation at baseline: 29 in the placebo group and 37 in the SNG001 group. Patients receiving SNG001 had greater odds of improvement on the OSCI scale (odds ratio 2.32 [95% CI 1.07–5.04]; p=0.033) on day 15 or 16 and were more likely than those receiving placebo to recover to an OSCI score of 1 (no limitation of activities) during treatment (hazard ratio 2.19 [95% CI 1.03–4.69]; p=0.043). No significant difference was found between treatment groups in the odds of hospital discharge by day 28: 39 (81%) of 48 patients had been discharged in the nebulised interferon beta-1a group compared with 36 (75%) of 48 in the placebo group (OR 1.84 [95% CI 0.64–5.29]; p=0.26). There was no significant difference between treatment groups in the odds of intubation or the time to intubation or death. SNG001 was well tolerated: the most frequently reported treatment-emergent adverse event was headache (seven [15%] patients in the SNG001 group and five [10%] in the placebo group). There were three deaths in the placebo group and none in the SNG001 group.

Davoudi-Monfared et al. 2020 published results related to the RCT on Interferon beta-1a treatment (n=46) vs the standard of care (n=46), in 92 patients with severe COVID-19 in Iran (IRCT20100228003449N28) [136]. Finally 81 patients (42 in the IFN and 39 in the control group) completed the study. The clinical response was not significantly different between the IFN and the control groups (9.7 +/- 5.8 vs. 8.3 +/- 4.9 days respectively, P=0.95). On day 14, 66.7% vs. 43.6% of patients in the IFN group and the control group were discharged, respectively (OR=2.5; 95% CI: 1.05–6.37). The 28-day overall mortality was significantly lower in the IFN group than the control group (19% vs. 43.6% respectively, p=0.015). Early administration significantly reduced mortality (OR=13.5; 95% CI: 1.15–118).

Rahmani et al. 2020 [137] published the results of a RCT evaluated efficacy and safety of interferon (IFN) β-1b in the treatment of 80 patients with severe COVID-19 (IRCT20100228003449N27). Patients in the IFN group received IFN β-1b (250 mg subcutaneously every other day for two consecutive weeks) along with the national protocol medications while in the control group, patients received only the national protocol medications (lopinavir/ritonavir or atazanavir/ritonavir plus hydroxychloroquine for 7–10 days). 33 patients in each group completed the study. The clinical improvement in the IFN group was significantly shorter than the control group ([9(6–10) vs. 11(9–15) days respectively, p=0.002, HR = 2.30; 95% CI: 1.33–3.39]). At day 14, the percentage of discharged patients was 78.79% and 54.55% in the IFN and control groups respectively (OR = 3.09; 95% CI: 1.05–9.11, p = 0.03). ICU admission rate in the control group was significantly higher than the IFN group (66.66% vs. 42.42%, p = 0.04). The duration of hospitalization and ICU stay
Results: Therapeutics

were not significantly different between the groups. All-cause 28-day mortality was 6.06% and 18.18% in the IFN and control groups respectively (p = 0.12).

In SOLIDARITY (INF) RCT (ISRCTN83971151) results on comparisons of subcutaneous interferon beta-1a vs standard care in patients with mild to critical COVID-19 admitted to 405 centers in 30 countries were published as preprint [138, 139]. In 11,266 adults were randomized, with 2750 allocated remesivir, 954 hydroxychloroquine, 1411 lopinavir, 651 interferon plus lopinavir, 1412 only interferon, and 4088 no study drug. Death rate ratio for interferon was not statistically significant different in comparison with control group: RR=1.16 (0.96-1.39, p=0.11; 243/2050 vs 216/2050) (or 1.12, 0.83-1.51, without lopinavir co-administration). The same is true for outcomes Initiation of ventilation or Hospitalisation duration.

Pandit et al. 2021 [140] published results of RCT conducted in 40 patients with moderate COVID-19 (PEG IFN-α2b plus SOC, vs SOC alone). The primary endpoint was improvement in clinical status on day 15, measured by the WHO 7-point ordinal scale. Overall, 19 (95.00%) subjects in PEG IFN-α2b plus SOC had achieved clinical improvement on day 15 compared to 13 (68.42%) subjects in SOC (p< 0.05); 80% and 95% of subjects in the PEG IFN-α2b plus SOC group had a negative RT-PCR result on day 7 and day 14, respectively, compared to 63% and 68% in the SOC group. Adverse events were reported for eleven subjects in the PEG IFN-α2b plus SOC group and eight subjects in the SOC group. All reported AEs were mild.

Darazam et al. [141] published as preprint as well as scientific article [142] results from three-arm, individually-randomized, open-label, controlled trial of IFNβ1a and IFNβ1b, comparing the magainst each other and a control group (NCT04343768). Patients were randomly assigned in a 1:1:1 ratio to IFNβ1a (subcutaneous injections of 12,000 IU on days 1, 3, 6), IFNβ1b (subcutaneous injections of 8,000,000 IU on days 1, 3, 6), or the control group. A total of 60 severely ill patients with positive RT-PCR and Chest CT scans underwent randomization (20 patients to each arm). In the Intention-To-Treat population, IFNβ1a was associated with a significant difference against the control group, in the outcome Time to clinical improvement (; (HR; 2.36, 95% CI =1.10-5.17, p=0.031) while the IFNβ1b indicated no significant difference compared with the control; HR; 1.42, (95% CI =0.63-3.16, p=0.395). The mortality was numerically lower in both of the intervention groups (20% in the IFNβ1a group and 30% in the IFNβ1b group vs. 45% in the control group). There were no significant differences between the three arms regarding the adverse events.

Summary of Findings table related to meta-analysis on results of 4 RCTs (Davoudi-Monfared, Rahman, SOLIDARITY-INF, Darazam COVIFERON) on comparisons of interferon beta-1a vs standard of care in patients with moderate/severe/critical COVID-19 patients, is presented in Table 3.11-1. In summary, according to currently available very low certainty of evidence, the evidence is very uncertain about the effect of interferon beta-1a on outcomes: WHO progression score level 7 or above D28 (RR 0.46, 95% CI 0.24 to 0.90, 2 RCTs) and All-cause mortality D28 (RR 0.67, 95% CI 0.38 to 1.18, 4 RCTs).

SOLIDARITY
651Pts INF + lopinavir, 1,412Pts. nur INF
keine Unterschiede bei
Endpunkten

RCT
40 Pts.
gering Unterschiede bei
Endpunkten

3-armiger RCT:
60 Patient*innen
schwer Erkrankung

bessere klin. Ergebnisse
und Mortalität unter
IFNβ1a und IFNβ1b

SoF Tabelle zu 4 RCTs:
niedrige
Aussagesicherheit der
Studien zur
Verbesserungen und
Gesamtmortalität
Table 3.11-1: Summary of findings table on **Interferon β-1a compared to Standard Care for Hospitalised COVID-19 patients** (4 RCTs: Davoudi-Monfared, Rahmani, SOLIDARITY-INF, Darazam COVIFERON) – https://covid-nma.com/living_data/index.php

Interferon β compared to Standard Care for Hospitalised COVID-19 patients
Patient or population: COVID-19
Setting: Worldwide Hospital
Intervention: Interferon β
Comparison: Standard Care/Placebo

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Anticipated absolute effects (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>Number of participants (studies)</th>
<th>Certainty of evidence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risk with Standard treatment/Placebo</td>
<td>Risk with Interferon Beta</td>
<td>RR: 0.67 (0.38 - 1.18)</td>
<td>4352 (4 RCTs) b</td>
<td>Very low certainty d</td>
</tr>
<tr>
<td>All-cause mortality D28</td>
<td>115 per 1,000</td>
<td>77 per 1,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viral negative conversion D7</td>
<td>Outcome not yet measured or reported</td>
</tr>
<tr>
<td>Clinical improvement D28</td>
<td>Outcome not yet measured or reported</td>
</tr>
<tr>
<td>WHO progression score (level 7 or above) D28</td>
<td>268 per 1,000</td>
<td>123 per 1,000</td>
<td>RR: 0.46 (0.24 - 0.9)</td>
<td>165 (2 RCTs) c</td>
<td>Very low certainty e</td>
</tr>
<tr>
<td>Number of patients with adverse events</td>
<td>Outcome not yet measured or reported</td>
</tr>
<tr>
<td>Number of patients with serious adverse events</td>
<td>Outcome not yet measured or reported</td>
</tr>
</tbody>
</table>

Explanations:
a The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI);
b Davoudi-Monfared E, 2020; Rahmani H, 2020; Pan H, SOLIDARITY, 2020; Darazam IA, COVIFERON, 2021; c Davoudi-Monfared E, 2020; Rahmani H, 2020; d Risk of bias: Serious some concerns regarding adequate randomization, deviation from intended intervention and selection of reported results, and high risk regarding missing data;
Inconsistency: Serious I²=66%;
Imprecision: Serious due to wide confidence interval consistent with the possibility for benefit and the possibility for no effect and low number of participants and events;
e Risk of bias: Serious Risk of bias downgraded by 1 level: some concerns regarding adequate randomization, deviation from intended intervention, selection of reported results and high risk regarding missing data;
Indirectness: Serious Indirectness downgraded by 1 level: studies from a single country, therefore results in this population might not be generalizable to other settings;
Imprecision: Serious due to low number of events and/or participants

GRADE Working Group grades of evidence:
High certainty: We are very confident that the true effect lies close to that of the estimate of the effect;
Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different;
Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect;
Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect.
3.12 Convalescent plasma transfusion

About the treatment under consideration

Convalescent plasma is plasma collected from patients that have recovered from an infectious disease and can be transfused to patients fighting an infection or can be used to manufacture immune globulin concentrates (plasma derived medicinal products). Possible explanations for the efficacy are that the antibodies from convalescent plasma might suppress virus mediated activation of the complement system, thus promoting viral elimination. Antibody is most effective when administered shortly after the onset of symptoms, and a sufficient amount of antibody must be administered. Plasma transfusions may be associated with transfusion reactions such as allergic reactions, antibody-mediated enhancement of infection, transfusion-related acute lung injury (TRALI) and circulatory overload [143-145]. Rare complications include the transmission of infectious pathogens and red cell alloimmunization.

The European Commission (EC) and US Food and Drug Administration (FDA) published guidance on convalescent plasma collected from individuals who have recovered from COVID-19 [146, 147]. The EC guidance aims to facilitate a common approach across EU Member States to the donation, collection, testing, processing, storage, distribution and monitoring of convalescent plasma for the treatment of COVID-19 [146]. The FDA guidance provides recommendations on the pathways for use of investigational COVID-19 convalescent plasma; patient eligibility; collection of COVID-19 convalescent plasma, including donor eligibility and donor qualifications; labeling and record keeping. As COVID-19 convalescent plasma is regulated as an investigational product, three pathways for use are available in US: 1. Clinical Trials; 2. Expanded Access; 3. Single Patient Emergency IND [147, 148].

On August 23, 2020 the FDA issued an emergency use authorization (EUA) for investigational convalescent plasma for the treatment of COVID-19 in hospitalized patients [149]. On February 4, 2021, FDA announced that this EUA is being revised to authorize only the use of high titer COVID-19 convalescent plasma, for the treatment of hospitalized patients with COVID-19, early in the disease course and those hospitalized with impaired humoral immunity. The use of low titer COVID-19 convalescent plasma is no longer authorized under this EUA. COVID-19 convalescent plasma should not be considered a new standard of care for the treatment of patients with COVID-19. Given that the clinical evidence supporting this EUA remains limited, data from additional randomized, controlled trials are needed. Under this EUA, authorized COVID-19 convalescent plasma will be obtained from registered or licensed blood establishments from donors in the United States or its territories in accordance with applicable regulations, policies, and procedures. Testing for relevant transfusion transmitted infections must be performed and the donation must be found suitable. Plasma donations must be tested by registered or licensed blood establishments for anti-SARS-CoV-2 antibodies as a manufacturing step to determine suitability before release, using one of the tests listed in the EUA document, https://www.fda.gov/media/141477/download.

FSA im August 2020: Emergency UseAuthorization (EUA)
Feb 2021: EUA Revision Verabreichung von Rekongesenzensplasma nur mehr im frühen Stadium von hospitalisierten Patient*innen und mit Plasma mit hohem Titer zugelassen

US NIH COVID-19 Treatment Guidelines:
For hospitalised patients with COVID-19 who do not have impaired immunity

2. The Panel recommends against the use of high-titer COVID-19 convalescent plasma for the treatment of COVID-19 in hospitalised patients who do not require mechanical ventilation, except in a clinical trial (AI).

For hospitalised patients with COVID-19 who have impaired immunity

- There is insufficient data for the Panel to recommend either for or against the use of high-titer COVID-19 convalescent plasma for the treatment of COVID-19.

For nonhospitalised patients with COVID-19

- There is insufficient data for the Panel to recommend either for or against the use of high-titer COVID-19 convalescent plasma for the treatment of COVID-19 in patients who are not hospitalised, except in a clinical trial.

Withdrawn, suspended or terminated studies

1 RCT was found as withdrawn in US, NCT04467151 (did not obtain funding to proceed) and 1 RCT found as terminated in Italy, NCT04393727, the Promoter was changed and a new study promoted by AI FA started.

Results of publications

Li et al. 2020 published results from RCT (ChiCTR200029757 [150]) conducted in 103 patients with COVID-19 (severe to critical) admitted to 7 centers in China. Convalescent plasma therapy added to standard treatment, compared with standard treatment alone, did not result in a statistically significant improvement in time to clinical improvement within 28 days (51.9% (27/52) of the convalescent plasma group vs 43.1% (22/51) in the control group (difference, 8.8% [95% CI, −10.4% to 28.0%]; hazard ratio [HR], 1.40 [95% CI, 0.79-2.49]; p = 0.26). Among those with severe disease, the primary outcome was statistically significant in favor of convalescent plasma (91.3% (21/23) vs 68.2% (15/22) of the control group (HR, 2.15 [95% CI, 1.07-4.32]; p = 0.03); among those with life-threatening disease the primary outcome occurred in 20.7% (6/29) of the convalescent plasma group vs 24.1% (7/29) of the control group (HR, 0.88 [95% CI, 0.30-2.63]; p = 0.83) (P for interaction = 0.17). There was no significant difference in 28-day mortality (15.7% vs 24.0%; OR, 0.65 [95% CI, 0.29-1.46]; p =0.30) or time from randomization to discharge (51.0% vs 36.0% discharged by day 28; HR, 1.61 [95% CI, 0.88-2.93]; p = 0.12). Two patients in the convalescent plasma group experienced adverse events within hours after transfusion that improved with supportive care. Interpretation of results is limited by early termination of the trial, which may have been underpowered to detect a clinically important difference.

Gharbharan et al. 2020 [151], published results as preprint, from prematurely halted RCT (NCT04342182), performed on 86 patients with COVID-19 (moderate-critical) admitted to 14 centers in the Netherlands [151].

Empfehlung gegen CVP oder insufficiente Datenlage

1 RCT zurückgezogen

Li (China)
RCT, 103 Pts
(statt 200, wegen Mangel an Pts)
keine Unterschiede bei Endpunkten

RCT (Niederlande):
86 Pts.
Results: Therapeutics

Avendano-Sola et al. 2020 published as preprint, results of multi-center RCT (NCT04345523) [152]: All patients received standard of care treatment, including off-label use of market-licensed medicines, and were randomized 1:1 to receive one dose (250-300 mL) of CP from donors with IgG anti-SARS-CoV-2. The trial was stopped after first interim analysis due to the fall in recruitment related to pandemic control. With 81 patients randomized, there were no patients progressing to mechanical ventilation or death among the 38 patients assigned to receive plasma (0%) versus 6 out of 43 patients (14%) progressing in control arm. Mortality rates were 0% vs 9.3% at days 15 and 29 for the active and control groups, respectively. No significant differences were found in secondary endpoints.

Agarwal et al. 2020 [153] [154] reported results from open-label, parallel-arm phase 2, multicenter, randomized controlled trial in India (CTR/2020/04/024775) conducted on hospitalized, moderately ill confirmed COVID-19 patients (PaO2/FiO2: 200-300 or respiratory rate > 24/min and SpO2 < 93% on room air). 464 participants were enrolled; 235 and 229 in intervention and control arm, respectively. Composite primary outcome (progression to severe disease or all cause mortality at 28 days) was achieved in 44 (19%) participants in the intervention arm and 41 (18%) in the control arm (risk difference 0.008 (95% confidence interval -0.062 to 0.078); risk ratio 1.01, 95% confidence interval 0.71 to 1.54

Balcells et al. 2020 [155] reported, as preprint, results from open-label, single-center, randomized clinical trial performed in an academic center in Santiago, Chile, including 58 patients (NCT04375098). No benefit was found in the primary outcome (32.1% vs 33.3%, OR 0.95, 95% CI 0.32-2.84, p>0.99) in the early versus deferred CP group. In-hospital mortality rate was 17.9% vs 6.7% (OR 3.04, 95% CI 0.54-17.2, p=0.25), mechanical ventilation 17.9% vs 6.7% (OR 3.04, 95% CI 0.54-17.2, p=0.25), and prolonged hospitalization 21.4% vs 30% (OR 0.64, 95% CI 0.19-2.1, p=0.55) in early versus deferred CP group, respectively. Viral clearance rate on day 3 (26% vs 8%, p=0.20) and day 7 (38% vs 19%, p=0.37) did not differ between groups. Two patients experienced serious adverse events within 6 or less hours after plasma transfusion.

Simonovich et al 2020 [156] published results from RCT (NCT04383535) in hospitalized adult patients with severe Covid-19 pneumonia. A total of 228 patients were assigned to receive convalescent plasma and 105 to receive placebo. The median time from the onset of symptoms to enrollment in the trial was 8 days (interquartile range, 5 to 10), and hypoxemia was the most frequent severity criterion for enrollment. The infused convalescent plasma had a median titer of 1:3200 of total SARS-CoV-2 antibodies (interquartile range, 1:800 to 1:3200). At day 30, no significant difference was noted between the convalescent plasma group and the placebo group in the distribution of clinical outcomes according to the ordinal scale (odds ratio, 0.83 (95% confidence interval [CI], 0.52 to 1.35; p=0.46). Overall mortality was 10.96% in the convalescent plasma group and 11.43% in the placebo group, for a risk difference of -0.46 percentage points (95% CI, -7.8 to 6.8). Adverse events and serious adverse events were similar in the two groups.

Libster et al. 2021 [157] published results from randomized, double-blind, placebo-controlled trial of convalescent plasma with high IgG titers against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in older adult patients within 72 hours after the onset of mild Covid-19 symptoms (NCT04479163; PAEPCC19; Plataforma PRISA (1421)). The trial was stopped early at 76% of its projected sample size because cases of Covid-19 in the trial region decreased considerably and steady enrollment of trial patients became virtually impossible. A total of 160 patients underwent Sept 2020: Publikation zu RCT
CVP vs. SOC
frühzeitiger Abbruch wegen Mangel an Rekrutierung: Interim Analyse von 81 Pts

Okt 2020
preprint RCT (open-label)
Indien
464 Pts
kein Unterschied bei Mortalität oder Fortschreiten der Krankheit

preprint RCT (open-label)
Chile
58 Pts
kein Unterschied bei Mortalität, Dauer des Krankenhausaufenthalts und künstlicher Beatmung

RCT
228 Patient*innen
kein Unterschied

RCT 160 Pts
milde Erkrankung

Vorteile bei Fortschreiten zu schwerer
Atemwegserkrankung
keine Nebenwirkungen
randomisation. In the intention-to-treat population, severe respiratory disease developed in 13 of 80 patients (16%) who received convalescent plasma and 25 of 80 patients (31%) who received placebo (relative risk, 0.52; 95% confidence interval [CI], 0.29 to 0.94; p=0.03), with a relative risk reduction of 48%. A modified intention-to-treat analysis that excluded 6 patients who had a primary end-point event before infusion of convalescent plasma or placebo showed a larger effect size (relative risk, 0.40; 95% CI, 0.20 to 0.81). No solicited adverse events were observed.

Two more RCTs was found as preprint publications: AlQahtani et al. 2020 (NCT04356534); and Ray et al. 2020 (CTRi /2020/05/025209); results will be presented after peer-review publication. Rasheed et al. 2020 published results from RCT in Iraq [158] on forty nine early-stage critically-ill COVID-19 patients residing in Respiratory Care Units (RCU): 21 received convalescent plasma while 28, namely control group, did not receive it. Recovery or death, length of stay in hospital, and improvement in the clinical course of the disease were monitored clinically along with laboratory monitoring through SARS-CoV-2 RNA detection via PCR, and SARS-CoV-2 IgG and IgM serological monitoring. Patients who received convalescent plasma showed reduced duration of infection in about 4 days and showed less death rate [1/21 versus 8/28 in control group]. In addition, all the patients who were given convalescent plasma showed high levels of SARS-CoV-2 IgG and IgM three days after plasma transfusion. Plasma from donors with high levels of SARS-CoV-2 IgG and donors with positive SARS-CoV-2 IgM showed better therapeutic results than other donors. Authors concluded that convalescent plasma therapy is an effective therapy if donors with high level of SARS-CoV2 antibodies are selected and if recipients are at their early stage of critical illness, being no more than three days in RCU.

Salman et al. 2020 published preliminary results from RCT in Egypt [159] conducted in 30 patients with severe COVID-19 infection. In convalescent plasma group, there was statistically significant improvement of clinical parameters, as well as serum ferritin, D-dimer, C-reactive protein, and the size of lung lesion compared to control group (p≤0.05). COVID-19 neutralizing antibodies appeared in serum of convalescent plasma patients, but failed to show in the control group patients during 5 days study period.

The RECOVERY trial independent Data Monitoring Committee (DMC) held a routine meeting on Thursday January to review the available safety and efficacy data. On January 15, 2021 the RECOVERY trial chief investigators released the statement related to recruitment to convalescent plasma treatment for hospitalised with COVID-19. On the advice of the independent Data Monitoring Committee (DMC), recruitment to the convalescent plasma arm of the RECOVERY trial has now closed. The DMC saw no convincing evidence that further recruitment would provide conclusive proof of worthwhile mortality benefit either overall or in any pre-specified subgroup [160].

The RECOVERY Collaborative Group published as preprint results from the RECOVERY trial [161] and on May 14, 2021 from scientific publication [162]. 5795 hospitalised patients were randomly allocated to receive high-titre convalescent plasma and 5763 to usual care alone. At randomisation, 617 (5%) were receiving invasive mechanical ventilation, 10044 (87%) were receiving oxygen only (with or without non-invasive respiratory support), and 897 (8%) were receiving no oxygen therapy. 92% of patients were receiving corticosteroids at time of randomisation.
Results: Therapeutics

There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1.00, 95% CI 0.93–1.07; p=0.95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0.99, 95% CI 0.94–1.03; p=0.57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0.99, 95% CI 0.93–1.05; p=0.79).

O’Donnell et al. 2021 [163] published as preprint results from RCT (NCT04359810) in US and Brazil on 223 severe COVID-19 patients (150 were randomised to receive convalescent plasma and 73 to normal control plasma). At 28 days, no significant improvement in clinical status was observed in participants randomised to convalescent plasma (with an odds ratio (OR) of a 1-point improvement in the scale: 1.50, 95% confidence interval (CI) 0.83–2.68, p=0.180). 28-day mortality was significantly lower in participants randomised to convalescent plasma vs control plasma (19/150 [12.6%] versus 18/73 [24.6%), OR 0.44, 95% CI 0.22–0.91, p=0.034). The median titre of anti-SARS-CoV-2 neutralizing antibody in infused convalescent plasma was 1:160 (IQR 1:80–1:320). Serious adverse events occurred in 39/147 (27%) participants who received convalescent plasma and 26/72 (36%) participants who received control plasma.

Koerper et al. 2021 [164] published results as preprint from RCT CAPSID in 105 hospitalised COVID-19 patients in Germany (NCT04433910; EudraCT 2020-001310-38). Patients (n=105) were randomised 1:1 to either receive standard treatment and 3 units of CCP or standard treatment alone. Control group patients with progress on day 14 could cross over to the CCP group. Primary outcome was a dichotomous composite outcome of survival and no longer fulfilling criteria for severe COVID-19 on day 21. The primary outcome occurred in 43.4% of patients in the CCP and 32.7% in the control group (p=0.32). The median time to clinical improvement was 26 days (IQR 15 not reached (n.r.)) in the CCP group and 66 days (IQR 13-n.r.) in the control group (p=0.27). Median time to discharge from hospital was 31 days (IQR 16-n.r.) in the CCP group and 51 days (IQR 20-n.r.) in the control group (p=0.24). In the subgroup that received a higher cumulative amount of neutralising antibodies the primary outcome occurred in 56.0% (versus 32.1%), with a shorter interval to clinical improvement, shorter time to hospital discharge and better survival compared to the control group.

The Living Systematic Review with meta-analysis, related to 16 RCTs: Li et al. 2020 [150], Gharbharan et al. 2020 [151], Avendano-Sola et al. 2020 [141], Agarwal et al. 2020 [153], Simonovich [156], AlQubtan et al. 2020, Iibster et al. 2020 [157], Ray et al. 2020, Rasheed et al. 2020 [158], Salmen et al. 2020 [159], Horby RECOVERY [165], O’Donnell [163], Bajpai et al. 2021, Pouladzadeh et al. 2021, Bennett-Guerrero et al. 2021 and Koerper et al. 2021 with Summary of findings table is provided in Table 3.12.1. In summary, according to currently available evidence, convalescent plasma may not reduce all-cause mortality D28 (RR 0.85, 95% CI 0.69 to 1.05, 11 RCTs, low certainty of evidence); probably does not increase incidence of clinical improvement D28 (RR 1.00, 95% CI 0.97 to 1.03, 6 RCTs, moderate certainty of evidence); may not decrease WHO progression score level 7 or above D28 (RR 0.80, 95% CI 0.57–1.11, 5 RCTs, moderate certainty of evidence).

Zusammenfassung von 16 RCTs; niedrige Aussagekraft
kein Unterschied bei Gesamtmortalität, bei klinischer Verbesserung

Unterschied bei 28-Tage Mortalität (nicht aber bei klinischer Verbesserung)

RCT (Brasilien)
223 Pts.
bessere Ergebnisse: rasche klinische Verbesserungen und frühere Spitalsentlassungen

RCT (Deutschland)
105 Pts.

kein Unterschied bei 28-Tages Mortalität und Progression zur künstlichen Beatmung
0.57 to 1.10, 3 RCTs, certainty of evidence); probably does not increase incidence of Adverse events (RR 1.05, 95% CI 0.94 to 1.18, 6 RCTs, moderate certainty of evidence) and may not increase Serious adverse events (RR 0.94, 95% CI 0.72 to 1.23, 9 RCTs, low certainty of evidence). The evidence is very uncertain about the effect of convalescent plasma on further outcome: Viral negative conversion D7 (RR 1.64, 95% CI 0.88 to 3.06, 3 RCTs, very low certainty of evidence).
Table 3.12-1: Summary of findings table on Convalescent plasma compared to Standard Care for Mild/Moderate/Severe/Critical COVID-19
(16 RCTs: Li, Gharbharan, Avendano-Sola, Agarwal, AlQahtani, Simonovich, Libster, Ray, Rasheed, Salman, Horby RECOVERY, ODonnell, Bajpai, Pouladzadeh, Bennett-Guerrero, Koerper)

Convalescent plasma compared to Standard Care for Hospitalised COVID-19 patients (update 04/06/2021)

Patient or population: Hospitalised COVID-19
Setting: Worldwide
Intervention: Convalescent plasma
Comparison: Standard Care/Placebo

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Anticipated absolute effects (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>Number of participants (studies)</th>
<th>Certainty of evidence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risk with Standard treatment/Placebo</td>
<td>Risk with Convalescent plasma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-cause mortality D28</td>
<td>237 per 1,000</td>
<td>202 per 1,000</td>
<td>RR: 0.85 (0.69 - 1.05)</td>
<td>13093 (11 RCTs) b</td>
<td>Low certainty</td>
</tr>
<tr>
<td>Viral negative conversion D7</td>
<td>482 per 1,000</td>
<td>791 per 1,000</td>
<td>RR: 1.64 (0.88 - 3.06)</td>
<td>459 (3 RCTs) c</td>
<td>Very low certainty</td>
</tr>
<tr>
<td>Clinical improvement D28</td>
<td>650 per 1,000</td>
<td>650 per 1,000</td>
<td>RR: 1.00 (0.97 - 1.03)</td>
<td>12195 (6RCTs) d</td>
<td>Moderate certainty</td>
</tr>
<tr>
<td>WHO progression score (level 7 or above) D28</td>
<td>203 per 1,000</td>
<td>162 per 1,000</td>
<td>RR: 0.80 (0.57 - 1.10)</td>
<td>638 (3RCTs) e</td>
<td>Low certainty</td>
</tr>
<tr>
<td>Number of patients with adverse events</td>
<td>397 per 1,000</td>
<td>417 per 1,000</td>
<td>RR: 1.05 (0.94 - 1.18)</td>
<td>956 (6RCTs) f</td>
<td>Moderate certainty</td>
</tr>
<tr>
<td>Number of patients with serious adverse events</td>
<td>169 per 1,000</td>
<td>159 per 1,000</td>
<td>RR: 0.94 (0.72 - 1.23)</td>
<td>1197 (9RCTs) g</td>
<td>Low certainty</td>
</tr>
</tbody>
</table>

GRADE Working Group grades of evidence:
High certainty: We are very confident that the true effect lies close to that of the estimate of the effect;
Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different;
Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect;
Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect.
Explanations: a The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI); b AlQahtani M, 2020; Avendaño-Solà C, 2020; Agarwal A, PLACID, 2020; Horby P, RECOVERY, 2021; Li L, 2020; Simonovich VA, PlasmAr, 2020; Ray Y, 2020, O Donnell M, 2021; Bajpai M, 2020; Koerper S, 2021; Bennett-Guerrero E, 2021; c Agarwal A, PLACID, 2020; Li L, 2020; Salman OH, 2020; d Horby P, RECOVERY, 2021; AlQahtani M, 2020; Gharbharan A, 2020; Li L, 2020; Simonovich VA, PlasmAr, 2020; Bennet-Guerrero E, 2021; e Avendaño-Solà C, 2020; Simonovich VA, 2020, O Donnell M, 2021; f Li L, 2020; Libster R, 2020; Simonovich VA, 2020, O Donnell M, 2021; Bajpai M, 2020; Koerper S, 2021; Bennett-Guerrero E, 2021; h Inconsistency: Serious Inconsistency downgraded by 1 level: the pooled effect is not consistent with the effect from the largest trial. Imprecision: Serious Imprecision downgraded by 1 level: due to wide confidence interval consistent with the possibility for benefit and the possibility for no effect; i Risk of bias: Serious Risk of bias downgraded by 1 level: some concerns regarding adequate randomization, deviations from intended interventions, missing data and selection of the reported result. Inconsistency: Serious Inconsistency downgraded by 1 level: I²=76% Imprecision: Very serious Imprecision downgraded by 2 levels: due to wide confidence interval consistent with the possibility for benefit and the possibility for no effect and low number of participants. j Risk of bias: Serious Risk of bias downgraded by 1 level: some concerns regarding adequate randomization, deviation from intended intervention, outcome measurement and selection of reported results; k Imprecision: Very serious due to wide confidence interval consistent with the possibility for benefit and the possibility for no effect and low number of participants; l Imprecision: Very serious Imprecision downgraded by 2 level: due to wide confidence interval consistent with the possibility for benefit and the possibility for no effect and low number of participants
3.13 Plasma derived medicinal products

Neutralizing monoclonal antibodies

As Marovich et al. 2020 [166] stated, neutralizing monoclonal antibodies to SARS-CoV-2 have the potential to be used for both prevention and treatment of infection. They can help to guide vaccine design and development as well. The main target of SARS-CoV-2 neutralizing monoclonal antibodies is the surface spike glycoprotein that mediates viral entry into host cells. Some products will include a combination of 2 monoclonal antibodies targeting different sites on the spike protein. Due to long half-life of most monoclonal antibodies (approximately 3 weeks for IgG1), a single infusion should be sufficient. A potential limitation of monoclonal antibodies for treatment of COVID-19 is the unknown bioavailability of passively infused IgG in tissues affected by the disease, especially the lungs, which serve as a key target of SARS-CoV-2 infection. Due to the effect of viral diversity it will be important to monitor for the emergence of resistant viral mutations under selective pressure of monoclonal antibody treatment.

Possible disease enhancement include antibody-mediated enhancement of viral entry and replication in target cells (Fc-bearing monocytes or macrophages) and virus-antibody immune complexes and the associated cytokine release [166].

3.13.1 REGN-COV2 - combination of two monoclonal antibodies (REGN10933 and REGN10987)

REGN-COV2 is a combination of two monoclonal antibodies (REGN10933 and REGN10987) which bind non-competitively to the critical receptor binding domain of the virus’s spike protein, which diminishes the ability of mutant viruses to escape treatment and protects against spike variants that have arisen in the human population.

A phase 3 prevention trial evaluates REGNCOV2’s ability to prevent infection among uninfected people who have had close exposure to a COVID-19 patient (such as the patient’s house mate) at approximately 100 sites and is expected to enroll 2,000 patients in the U.S.; the trial will assess SARS-CoV-2 infection status.

REGN-COV2 has also moved into the phase 2/3 portion of two adaptive phase 1/2/3 trials testing the cocktail’s ability to treat hospitalised and non-hospitalised (or “ambulatory”) patients with COVID-19. The two phase 2/3 treatment trials in hospitalized (estimated enrollment =1,850) and non-hospitalized (estimated enrollment =1,050) patients are ongoing. Results from both patient setting can be found below.

On September 14, 2020 the University of Oxford and Regeneron Pharmaceuticals, Inc. announced that RECOVERY (Randomised Evaluation of COVid-19 therApY) will evaluate Regeneron’s investigational anti-viral antibody cocktail, REGNorton, in patients hospitalised with COVID-19. The phase 3 open-label trial in patients hospitalised with COVID-19 will compare the effects of adding REGN-COV2 to the usual standard-of-care versus standard-of-care on its own.
New SARS-CoV-2 Variants

On January 27, 2021, Regeneron Pharmaceuticals, Inc. announced that researchers in Columbia University lab [167] and Regeneron scientists have independently confirmed that REGEN-COV™ (casirivimab and imdevimab antibody cocktail) successfully neutralizes the circulating SARS-CoV-2 variants first identified in the UK (B.1.1.7) and South Africa (B.1.351), in preclinical research. Both antibodies retaining their potency against the B.1.1.7 variant; against the B.1.351 variant, imdevimab retained its potency and, while the casirivimab potency was reduced, it was still comparable to the potency of other single antibodies in development that have against the original virus. Regeneron is conducting additional preclinical research against the variant first identified in Brazil (1.1.248), https://investor.regeneron.com/news-releases/news-release-details/regen-cov-anti-body-cocktail-active-against-sars-cov-2-variants.

In the FDA new revision related to REGN-COV2 and new variants, published on March 2021, casirivimab and imdevimab individually and together retained neutralization activity against pseudovirus expressing all spike protein substitutions found in the B.1.1.7 lineage (UK origin) and against pseudovirus expressing only N501Y found in B.1.1.7 and other circulating lineages (Table 3.13-1). Casirivimab and imdevimab together retained neutralization activity against pseudovirus expressing all spike protein substitutions, or individual substitutions K417N, E484K or N501Y, found in the B.1.351 lineage (South Africa origin), and against K417T+E484K, found in the P.1 lineage (Brazil origin), although casirivimab alone, but not imdevimab, had reduced activity against pseudovirus expressing K417N or E484K, as indicated above. The E484K substitution is also found in the B.1.526 lineage (New York origin). Casirivimab and imdevimab, individually and together, retained neutralization activity against the L452R substitution found in the B.1.427/B.1.429 lineages (California origin). It is not known how pseudovirus data correlate with clinical outcomes [168].

Table 3.13-1. Pseudovirus neutralization data for SARS-CoV-2 variant substitutions with Casirivimab and Imdevimab together

<table>
<thead>
<tr>
<th>Lineage with Spike Protein Substitution</th>
<th>Key substitutions tested</th>
<th>Fold reduction in susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1.1.7 (UK origin)</td>
<td>N501Y</td>
<td>no change<sup>c</sup></td>
</tr>
<tr>
<td>B.1.351 (South Africa origin)</td>
<td>K417N, E484K, N501Y<sup>b</sup></td>
<td>no change<sup>c</sup></td>
</tr>
<tr>
<td>P.1 (Brazil origin)</td>
<td>K417T+E484K</td>
<td>no change<sup>c</sup></td>
</tr>
<tr>
<td>B.1.427/B.1.429 (California origin)</td>
<td>L452R</td>
<td>no change<sup>c</sup></td>
</tr>
<tr>
<td>B.1.526 (New York origin)<sup>d</sup></td>
<td>E484K</td>
<td>no change<sup>c</sup></td>
</tr>
</tbody>
</table>

a Pseudovirus expressing the entire variant spike protein was tested. The following changes from wild-type spike protein are found in the variant: del69-70, del145, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H.

b Pseudovirus expressing the entire variant spike protein was tested. The following changes from wild-type spike protein are found in the variant: D80Y, D215Y, del241-243, K417N, E484K, N501Y, D614G, A701V.

c No change: <2-fold reduction in susceptibility.

d Not all isolates of the New York lineage harbor the E484K substitution (as of February 2021).

Source: [168]

US COVID-19 Treatment Guidelines (last update June 11, 2021)

AIHTA® 2021 73
- The US COVID-19 Treatment Guidelines Panel recommends using one of the following combination anti-SARS-CoV-2 monoclonal antibodies to treat outpatients with mild to moderate COVID-19 who are at high risk of clinical progression, as defined by the EUA criteria (listed in alphabetical order):

Bamlanivimab plus etesevimab; or Casirivimab plus imdevimab; or Sotrovimab

- Treatment should be started as soon as possible after the patient receives a positive result on a SARS-CoV-2 antigen or nucleic acid amplification test (NAAT) and within 10 days of symptom onset.
- There are no comparative data to determine whether there are differences in clinical efficacy or safety between bamlanivimab plus etesevimab, casirivimab plus imdevimab, or sotrovimab.
- The Panel recommends against the use of anti-SARS-CoV-2 monoclonal antibodies for patients who are hospitalised because of COVID-19, except in a clinical trial (AIIa). However, their use should be considered for persons with mild to moderate COVID-19 who are hospitalised for a reason other than COVID-19 but who otherwise meet the EUA criteria [169].

Results of publication

On December 17 2020, Winreich et al. [170] published preliminary results of phase 1–2 portion of ongoing double-blind, phase 1–3 trial (NCT04425629) involving nonhospitalised patients with COVID-19, randomly assigned (1:1:1) to receive placebo, 2.4 g of REGN-COV2, or 8.0 g of REGN-COV2 and were prospectively characterized at baseline for endogenous immune response against SARS-CoV-2 (serum antibody-positive or serum antibody-negative). In this interim analysis, data from 275 patients are reported: the REGN-COV2 antibody cocktail reduced viral load, with a greater effect in patients whose immune response had not yet been initiated or who had a high viral load at baseline. The same is true for medically attended visits, with a greater effect among patients who were serum antibody-negative at baseline. The percentage of patients with hypersensitivity reactions, infusion-related reactions, and other adverse events were similar in the combined REGN-COV2 dose groups and the placebo group.

On May 21, 2021 Winreich et al. [171] published as preprint results from phase 3 portion of the above mentioned adaptive, randomized, master protocol, included 4057 COVID-19 outpatients with one or more risk factors for severe disease (NCT04425629). Patients were randomized to a single treatment of intravenous placebo, or various doses of REGN-COV2, and followed for 28 days. The prespecified hierarchical analysis first compared REGN-COV2 2400 mg dose vs concurrent placebo, then compared the 1200 mg dose vs concurrent placebo, for endpoints assessing risk of hospitalization or death, and time to symptom resolution. Safety was evaluated in all treated patients. Both REGN-COV 2400 mg and 1200 mg significantly reduced COVID-19-related hospitalization or all-cause death compared to placebo (71.3% reduction [1.3% vs 4.6%; p<0.0001] and 70.4% reduction [1.0% vs 3.2%; p=0.0024], respectively). The median time to resolution of COVID-19 symptoms was 4 days shorter in both dose arms vs placebo (10 vs 14 days; p<0.0001). Efficacy of REGN-COV was consistent across subgroups, including patients who were SARS-CoV-2 serum antibody-positive at baseline. REGN-COV more rapidly reduced viral load than placebo. Serious adverse events occurred more frequently in the placebo group (4.0%) than in the 1200 mg (1.1%) and 2400 mg (1.3%) groups and grade ≥2 infusion-related reactions were infrequent (<0.3% in all groups).
Dose-ranging Virolology Trial

A companion dose-ranging phase 2 trial of 803 outpatient COVID-19 patients was conducted to evaluate the antiviral effect of several different REGN-COV2 doses (IV: 2,400 mg, 1,200 mg, 600 mg and 300 mg; SC: 1,200 mg and 600 mg). All tested doses met the primary endpoint, rapidly and significantly reducing patients’ viral load (log10 copies/mL) compared to placebo (p<0.001). Each dose demonstrated similar efficacy, including the lowest doses tested (IV: 300 mg; SC: 600 mg). In addition, a companion phase 2 trial showed that even the lowest doses tested (IV: 300 mg; subcutaneous [SC]: 600 mg) had significant viral load reductions over the first 7 study days, comparable to the 2,400 mg and 1,200 mg IV doses. A safety assessment conducted on all available patient data up to day 169 identified no new safety signals. Serious adverse events (SAEs) were largely related to COVID-19 and occurred in 1.1% of patients in the 1,200 mg group, 1.3% in the 2,400 mg group and 4.0% in the placebo group.

Safety issue in hospitalised patients

On 30 October 2020, Regeneron Pharmaceuticals, Inc. received a recommendation from the independent data monitoring committee (IDMC) for the REGN-COV2 antibody cocktail treatment trials for COVID-19 that the current hospitalised patient trial be modified. Specifically, based on a potential safety signal and an unfavorable risk/benefit profile at this time, the IDMC recommends further enrollment of patients requiring high-flow oxygen or mechanical ventilation be placed on hold pending collection and analysis of further data on patients already enrolled. The IDMC also recommends continuing enrollment of hospitalized patients requiring either no or low-flow oxygen as the risk/benefit remains acceptable in these cohorts. Finally, the IDMC recommends continuation of the outpatient trial without modification.

Regulatory update:

On November 21, 2020, the U.S. Food and Drug Administration issued an emergency use authorization (EUA) for casirivimab and imdevimab to be administered together for the treatment of mild to moderate COVID-19 in adults and pediatric patients (12 years of age or older weighing at least 40 kg [about 88 pounds]) with positive results of direct SARS-CoV-2 viral testing and who are at high risk for progressing to severe COVID-19. This includes those who are 65 years of age or older or who have certain chronic medical conditions [172].

On February 1st, 2021, EMA’s human medicines committee (CHMP) has started a ‘rolling review’ of data on REGN-COV2 antibody combination (casirivimab / imdevimab), based on preliminary results from a study that indicate a beneficial effect of the medicines in reducing the amount of virus in the nose and throat of non-hospitalized patients with COVID-19 [173]. Once finalised it will be the basis for an EU marketing authorisation for this combination.

On February 26, 2021 EMA stated that the CHMP has completed its review to provide a harmonised scientific opinion at EU level to support national decision-making on the possible use of the antibodies before a formal authorisation is issued. The Agency concluded that the combination (REGN- COV2) can be used for the treatment of confirmed COVID-19 in patients who do not require supplemental oxygen and who are at high risk of progressing to severe COVID-19. Risk factors may include but are not limited to advanced age; obesity; cardiovascular disease, including hypertension; chronic lung disease, including asthma; type 1 or type 2 diabetes mellitus; chronic kidney
Results: Therapeutics

disease, including those on dialysis; chronic liver disease; immunosuppressed, based on prescriber’s assessment [174, 175].

Regeneron is collaborating with Roche to increase global supply of REGEN-COV2. Regeneron is responsible for development and distribution of the treatment in the U.S., and Roche is primarily responsible for development and distribution outside the U.S.

3.13.2 LY-CoV555 - neutralizing IgG1 monoclonal antibody (bamlanivimab) and LY-CoV016 - recombinant fully human monoclonal neutralizing antibody (etesevimab)

LY-CoV555 is a neutralizing IgG1 monoclonal antibody (mAb) directed against the spike protein of SARS-CoV-2. It is designed to block viral attachment and entry into human cells, thus neutralizing the virus, potentially preventing and treating COVID-19.

LY-CoV016 (also known as JS016) is a recombinant fully human monoclonal neutralizing antibody, which specifically binds to the SARS-CoV-2 surface spike protein receptor binding domain with high affinity and can effectively block the binding of the virus to the ACE2 host cell surface receptor.

Lilly has successfully completed enrollment and primary safety assessments of LY-CoV555 in a phase 1 study of hospitalized patients with COVID-19 (NCT04411628) and long-term follow-up is ongoing.

BLAZE-1 (NCT04427501) is ongoing randomized, double-blind, placebo-controlled phase 2 study designed to assess the efficacy and safety of LY-CoV555 and LY-CoV016 for the treatment of symptomatic COVID-19 in the outpatient setting. Across all treatment arms, the trial will enroll an estimated 800 participants.

A phase 3 study for the prevention of COVID-19 in residents and staff at long-term care facilities (NCT04497987, BLAZE-2) is recently initiated.

In addition, LY-CoV555 is being tested in the National Institutes of Health-led ACTIV-2 and ACTIV-3 studies of ambulatory and hospitalized COVID-19 patients.

To generate additional efficacy and safety data, a pragmatic, open-label study enrolling patients treated with either monotherapy or combination therapy, with a focus on collecting data regarding hospitalizations, deaths and safety, planned to be initiated in October 2020.

On 27 January 2021, Eli Lilly and Company, Vir Biotechnology, Inc. and Glaxo Smith Kline plc announced a collaboration to evaluate a combination of two COVID-19 therapies in low-risk patients with mild to moderate COVID-19. Lilly has expanded its ongoing BLAZE-4 trial to evaluate the administration of bamlanivimab (LY-CoV555) 700mg with VIR-7831 (dual-action monoclonal antibody, also known as GSK4182136) 500mg, two neutralizing antibodies that bind to different epitopes of the SARS-CoV-2 spike protein [176].

| Regeneron Kooperation mit Roche |
| 2 weitere mAb: |
| LY-CoV555 (Bamlanivimab) |
| LY-CoV016 (Etesevimab) |
| LY-CoV555: Phase 1 |
| BLAZE-1: RCT, Phase 2 |
| 800 Pts. |
| LY-CoV555 & LY-CoV016 |
| BLAZE-2: RCT, Phase 3 initiert |
| NIH-Studien: ACTIV-2 and ACTIV-3 |
| pragmatic trial in Planung |
| EliLilly Kooperation mit GSK zu Kombinations- therapie Bamlanivimab + VIR-7831 |
| bei milder/moderater Erkrankung |
New SARS-CoV-2 Variants

Bamlanivimab plus etesevimab combination

In the FDA new revision published on May 2021, related to bamlanivimab plus etesevimab combination and new variants, resistant variants were identified using directed evolution of the spike protein and serial passage in cell culture of SARS-CoV-2 in the presence of bamlanivimab or etesevimab individually. Resistant variants were not identified when bamlanivimab and etesevimab were tested together using the same methodology [177].

(Table 3.13-2) [178].

Table 3.13-2: Pseudovirus neutralization data for SARS-CoV-2 variant substitutions with bamlanivimab plus etesevimab together (1:2 molar ratio)

<table>
<thead>
<tr>
<th>Lineage with Spike Protein Substitution</th>
<th>Key substitutions testeda</th>
<th>Fold reduction in susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1.1.7 (UK origin)</td>
<td>NS01Y</td>
<td>no changeb</td>
</tr>
<tr>
<td>B.1.351 (South Africa origin)</td>
<td>K417N + E484K + N501Y</td>
<td>215c</td>
</tr>
<tr>
<td>P.1 (Brazil origin)</td>
<td>K417N + E484K + N501Y</td>
<td>> 46c</td>
</tr>
<tr>
<td>B.1.427/B.1.429 (California origin)</td>
<td>L452R</td>
<td>9d</td>
</tr>
<tr>
<td>B.1.526 (New York origin)</td>
<td>E484K</td>
<td>31</td>
</tr>
</tbody>
</table>

Source: [177]

a For variants with more than one substitution of concern, only the substitution(s) with the greatest impact on activity is(are) listed. For B.1.351, P.1 and B.1.427/B.1.429, spike variants reflective of the consensus sequence for the lineage were tested.

b No change: <5-fold reduction in susceptibility

c Bamlanivimab and etesevimab together are unlikely to be active against variants from this lineage. No activity observed at the highest concentration tested for the P.1 variant.

d Etesevimab retains activity against this variant.

e Isolates of the B.1.526 lineage harbor several spike protein amino acid substitutions, and not all isolates contain the E484K substitution (as of February 2021). This assay was conducted using pseudotyped VLPs with the E484K substitution only.

US COVID-19 Treatment Guidelines (last update June 11, 2021)

- The US COVID-19 Treatment Guidelines Panel recommends using one of the following combination anti-SARS-CoV-2 monoclonal antibodies to treat outpatients with mild to moderate COVID-19 who are at high risk of clinical progression, as defined by the EUA criteria (listed in alphabetical order):

 Bamlanivimab plus etesevimab; or Casirivimab plus imdevimab; or Sotrovimab

- Treatment should be started as soon as possible after the patient receives a positive result on a SARS-CoV-2 antigen or nucleic acid amplification test (NAAT) and within 10 days of symptom onset.

- There are no comparative data to determine whether there are differences in clinical efficacy or safety between bamlanivimab plus etesevimab, casirivimab plus imdevimab, or sotrovimab.

- The Panel recommends against the use of anti-SARS-CoV-2 monoclonal antibodies for patients who are hospitalized because of COVID-19, except in a clinical trial (AIIa). However, their use should be considered for persons with mild to moderate COVID-19 who are hospitalized for a reason other than COVID-19 but who otherwise meet the EUA criteria [169].
Results of publications

Final results of the phase 2 portion of BLAZE-1, a randomized, double-blind, placebo-controlled trial (NCT04427501) were published by Gottlieb et al. in 2021 [179]. The BLAZE-1 study is a randomized phase 2/3 trial at 49 US centers including ambulatory patients (n = 613) who tested positive for SARS-CoV-2 infection and had 1 or more mild to moderate COVID-19 symptoms. Patients who received bamlanivimab (LY-CoV555) monotherapy or placebo were enrolled first followed by patients who received bamlanivimab (LY-CoV555) and etesevimab (LY-CoV016) combination or placebo. Patients were randomized to receive a single infusion of bamlanivimab (700 mg [n=101], 2800 mg [n=107], or 7000 mg [n=101]), the combination on treatment (2800 mg of bamlanivimab and 2800 mg of etesevimab [n=112]), or placebo (n=156). The primary endpoint was change in SARS-CoV-2 log viral load at day 11 (±4 days). Nine prespecified secondary outcome measures were evaluated with comparisons between each treatment group and placebo, and included 3 other measures of viral load, 5 on symptoms, and 1 measure of clinical outcome (the proportion of patients with a COVID-19-related hospitalization, an emergency department [ED] visit, or death at day 29).

Data on a high and moderate certainty of evidence, related to effectiveness and safety of bamlanivimab monotherapy and bamlanivimab + etesevimab compared to placebo and each other, reported in this RCT, prepared by Cruciani et al. [180-183], can be found in the Summary of Findings tables 3.13-3, 4 and 5. In summary, based on the final results of the phase 2 portion of one RCT in outpatients with recently diagnosed mild or moderate COVID-19, no deaths occurred in bamlanivimab, bamlanivimab + etesevimab combination and placebo group (high certainty of evidence). Bamlanivimab 700 mg monotherapy and bamlanivimab 2800 mg + etesevimab 2800 mg treatment compared to placebo reduces COVID-19 related hospitalisation or visit to an emergency department at day 29 (high certainty of evidence). The change in mean total symptom score from baseline to day 11 was favouring the 700 mg monotherapy group (high certainty of evidence) and the bamlanivimab + etesevimab combination group (moderate certainty of evidence).

Bamlanivimab 700 mg and bamlanivimab + etesevimab treatment compared to placebo does not increase number of patients with adverse events or number of serious adverse events (high certainty of evidence). The same is true for bamlanivimab compared to bamlanivimab + etesevimab treatment. Bamlanivimab monotherapy or bamlanivimab + etesevimab treatment, compared to placebo, does not accelerate the natural decline in viral load over time (high certainty of evidence). The same is true for bamlanivimab compared to bamlanivimab + etesevimab treatment.

On January 26, 2021 Eli Lilly and Company announced unpublished results from phase 3 BLAZE-1 RCT on the combination therapy arm enrolled mild to moderate, recently diagnosed COVID-19 patients who are at high risk for progressing to severe COVID-19 and/or hospitalisation, studying bamlanivimab 2800 mg plus etesevimab 2800 mg versus placebo. The primary outcome measure for the phase 3 portion of the BLAZE-1 trial was the percentage of participants who experience COVID-related hospitalizations or death from any cause by day 29. The key secondary endpoints were change from baseline to day 7 in SARS-CoV-2 viral load, persistently high SARS-CoV2 viral load on day 7, time to sustained symptom resolution, and COVID-related hospitalization, ED visit or death from any cause from baseline by day 29. Additional endpoints include change from baseline in viral load at other time points, symptom improvement, symptom resolution, as well as safety.

Phase 2/3 RCT
BLAZE-1
613 Patient*innen
milde/ moderate
Erkrankung

Monotherapie vs. Kombinationstherapie mit Etesevimab

Ergebnisse von Phase 2 Kohorte

kein Unterschied bei Mortalität

signifikante Unterschiede bei Hospitalisierung, Besuch in Notfallambulanz unter Kombinationstherapie und Monotherapie

bessere Symptomkontrolle, aber unter beiden Interventionen

aber: keine raschere Viruslastreduktion
gleiche Nebenwirkungen

Phase 2/3 RCT
BLAZE-1
1.035 Patient*innen
Ergebnisse von Phase 3 Kohorte
milde/ moderate
Erkrankung, aber Risiko progredierter Erkrankung
Results: Therapeutics

Bamlanivimab (LY-CoV555) 2800 mg and etesevimab (LY-CoV016) 2800 mg together significantly reduced COVID-19-related hospitalizations and deaths in high-risk patients recently diagnosed with COVID-19. Across 1,035 patients, there were 11 events (2.1 percent) in patients taking therapy and 36 events (7.0 percent) in patients taking placebo, representing a 70 percent risk reduction (p=0.0004). There were 10 deaths total, all of which occurred in patients taking placebo, and no deaths in patients taking bamlanivimab and etesevimab together. Bamlanivimab and etesevimab together also demonstrated statistically significant improvements on all key secondary endpoints, providing strong evidence that the therapy reduced viral load and accelerated symptom resolution. The safety profile of bamlanivimab and etesevimab together was consistent with observations from other phase 1, phase 2 and phase 3 trials evaluating these antibodies. Serious adverse events were reported at a similar frequency in the bamlanivimab and etesevimab together and placebo groups.

Recently, on May 31, 2021, EUnetHTA Rapid Review was published on this topic [184].

On March 10, 2021, Eli Lilly and Company announced new data from the BLAZE-1 phase 3 study, demonstrating bamlanivimab (LY-CoV555) 700 mg and etesevimab (LY-CoV016) 1400 mg together significantly reduced COVID-19-related hospitalizations and deaths (events) in high-risk patients recently diagnosed with COVID-19.

This phase 3 cohort of BLAZE-1 included 769 high-risk patients, aged 12 and older with mild to moderate COVID-19 (therapy: n=511; placebo: n=258). There were four events in patients taking bamlanivimab with etesevimab and 15 events in patients taking placebo, representing an 87 percent risk reduction (p<0.0001). Bamlanivimab and etesevimab together also demonstrated statistically significant improvements on key secondary endpoints. These results are consistent with those seen in other data sets from BLAZE-1: in the previous phase 3 cohort, bamlanivimab 2800 mg with etesevimab 2800 mg reduced the risk of hospitalizations and deaths by 70 percent and in the phase 2 cohort, bamlanivimab alone reduced the risk of hospitalizations and ER visits by approximately 70 percent. The viral load reductions were also consistent with what was observed in the previous phase 3 cohort of the study. In this phase 3 cohort, there were four deaths total, all of which were due to COVID-19 and all of which occurred in patients taking placebo; no deaths occurred in patients receiving treatment with bamlanivimab and etesevimab together. Across the two phase 3 cohorts of the study that have been analyzed to date, there have been no deaths in patients receiving treatment with bamlanivimab and etesevimab together, and 14 deaths in patients receiving placebo, 13 of which were due to COVID-19 related. In this data set, the safety profile of bamlanivimab and etesevimab together was consistent with observations from other phase 1, phase 2 and phase 3 trials evaluating these antibodies, https://investor.lilly.com/news-releases/news-release-details/lyllys-ba-mani-mab-and-etesevi-mab-together-reduced-

Additionally, initial results from the ongoing BLAZE-4 trial (NCT04634409) provide viral load and pharmacodynamic/Pharmacokinetic data which demonstrate lower doses, including bamlanivimab 700 mg and etesevimab 1400 mg together, are similar to bamlanivimab 2800 mg and etesevimab 2800 mg together [185].
On March 29, 2021 Eli Lilly and Company, Vir Biotechnology, Inc., and GlaxoSmithKline plc announced data from the expanded phase 2 BLAZE-4 trial studying low-risk adult patients with mild to moderate COVID-19. Results showed that investigational bamlanivimab (LY-CoV555) 700 mg co-administered with VIR-7831 (also known as GSK4182136) 500 mg demonstrated a 70% (p<0.001) relative reduction in persistently high viral load (> 5.27; cycle threshold value < 27.5) at day 7 compared to placebo, meeting the primary endpoint. Bamlanivimab administered with VIR-7831 demonstrated a statistically significant reduction compared to placebo in the key virologic secondary endpoints of mean change from baseline to days 3, 5 and 7 in SARS-CoV-2 viral load. There were no events for the secondary endpoint of COVID-19 related hospitalization or death by day 29 in either study arm. One patient (in the treatment arm) visited the emergency room for COVID-19 related symptoms. No serious adverse events were seen with co-administration of bamlanivimab and VIR-7831. Bamlanivimab and VIR-7831 bind to different regions of the spike protein of SARS-CoV-2. Preclinical data suggest the administration of these two investigational antibodies together may provide protection against current variants of SARS-CoV-2 that are resistant to bamlanivimab.

Lundgren et al. 2020 (ACTIV-3/TICO LY-CoV555 Study group) published preliminary negative results from RCT (NCT04501978) compared LY-CoV555 with placebo in hospitalized patients who had Covid-19 without end-organ failure [187]. In addition, all the patients received high-quality supportive care as background therapy, including the antiviral drug remdesivir (95% of patients) and, when indicated, supplemental oxygen and glucocorticoids. The data and safety monitoring board recommended stopping enrollment for futility after 314 patients (163 in the LY-CoV555 group and 151 in the placebo group) had undergone randomization and infusion.

Data on high certainty of evidence, related to effectiveness and safety of bamlanivimab reported in this one RCT mentioned above, prepared by Cruciani et al. [188, 189], can be found in the Summary of Findings 3.13-6. Based on the interim results from one RCT with high certainty of evidence, in hospitalized patients, bamlanivimab compared to standard treatment does not reduce all-cause mortality, does not increase the number of patients with AEs and SAEs, and does not increase the number of patients discharged.

Pressemeldung:

Phase 2 BLAZE-4
Kombinationstherapie mit VIR-7831
in mild/ moderater Erkrankung
-70% Virust Staffordreduktion

RCT mit hospitalisierten
Pt.s mit Organversagen
Kombinationstherapie Bamlanivimab + Remdesivir
kein Unterschied/ keine Wirksamkeit

Daten zu hospitalisierten
Patient*innen
keine Reduktion der Gesamt mortalität
Table 3.13.3: Summary of findings (SoF) table for published RCTs related to effectiveness and safety of bamlanivimab monotherapy (all doses) compared to placebo and bamlanivimab+etesevimab combination treatment – OUTPATIENT (1 RCT: Gottlieb 2021)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Anticipated absolute effects (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>Number of participants (studies)</th>
<th>Certainty of evidence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality</td>
<td>No deaths occurred</td>
<td>No deaths occurred</td>
<td>No deaths occurred</td>
<td>HIGH</td>
<td>No deaths occurred</td>
</tr>
<tr>
<td></td>
<td>No deaths occurred</td>
<td>No deaths occurred</td>
<td>No deaths occurred</td>
<td>HIGH</td>
<td>No deaths occurred</td>
</tr>
<tr>
<td>Number of patients with any adverse events</td>
<td>269 per 1000</td>
<td>242 per 1000</td>
<td>RR 0.90 (0.65 to 1.25)</td>
<td>HIGH</td>
<td>Absolute effect (95% CI) 27 fewer per 1.000 (from 94 fewer to 67 more)</td>
</tr>
<tr>
<td></td>
<td>170 per 1000</td>
<td>243 per 1000</td>
<td>RR 1.43 (0.91 to 2.25)</td>
<td>HIGH</td>
<td>Absolute effect (95% CI) 73 more per 1.000 (from 15 fewer to 212 more)</td>
</tr>
<tr>
<td>Number of patients with serious adverse events</td>
<td>60 per 1000</td>
<td>10 per 1000</td>
<td>RR 0.17 (0.01 to 4.12)</td>
<td>HIGH</td>
<td>Absolute effect (95% CI) 5 fewer per 1.000 (from 6 fewer to 20 more)</td>
</tr>
<tr>
<td></td>
<td>90 per 1000</td>
<td>11 per 1000</td>
<td>RR 0.12 (0.00 to 2.96)</td>
<td>HIGH</td>
<td>8 fewer per 1.000 (from 17 more)</td>
</tr>
<tr>
<td>SARS-CoV-2 clearance</td>
<td>368 per 1000</td>
<td>390 per 1000</td>
<td>RR 1.06 (0.83 to 1.37)</td>
<td>HIGH</td>
<td>Absolute effect (95% CI) 22 more per 1.000 (from 63 fewer to 136 more)</td>
</tr>
<tr>
<td></td>
<td>367 per 1000</td>
<td>392 per 1000</td>
<td>RR 1.07 (0.80 to 1.42)</td>
<td>HIGH</td>
<td>Absolute effect (95% CI) 26 more per 1.000 (from 73 fewer to 154 more)</td>
</tr>
</tbody>
</table>

Abbreviations: CI=Confidence interval; RR=Risk ratio
Table 3.13-4: Summary of findings table for published RCT related to effectiveness and safety of bamlanivimab monotherapy (700 mg) compared to placebo and bamlanivimab (2800 mg) + etesevimab (2800 mg) combination treatment – OUTPATIENT (1 RCT: Gottlieb 2021)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Anticipated absolute effects (95% CI)(^a)</th>
<th>Relative effect (95% CI)</th>
<th>Number of participants (studies)</th>
<th>Certainty of evidence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risk with Placebo</td>
<td>Risk with Bamlanivimab + etesevimab (previously neutralizing antibody LY-CoV555)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-cause mortality vs Placebo</td>
<td>No deaths occurred</td>
<td>No deaths occurred</td>
<td>No deaths occurred</td>
<td>465 (1 RCT)(^b)</td>
<td>⬤⬤⬤⬤ HIGH</td>
</tr>
<tr>
<td>vs Bamlanivimab + etesevimab</td>
<td>No deaths occurred</td>
<td>No deaths occurred</td>
<td>No deaths occurred</td>
<td>465 (1 RCT)(^b)</td>
<td>⬤⬤⬤⬤ HIGH</td>
</tr>
<tr>
<td>COVID-19 related hospitalisation or emergency department visit at day 29 (^d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vs Placebo</td>
<td>58 per 1000</td>
<td>10 per 1000 (1 to 77)</td>
<td>RR 0.17 (0.02 to 1.33)</td>
<td>257 (1 RCT)(^b)</td>
<td>⬤⬤⬤⬤ HIGH</td>
</tr>
<tr>
<td>vs Bamlanivimab + etesevimab</td>
<td>9 per 1000</td>
<td>10 per 1000 (1 to 156)</td>
<td>RR 1.11 (0.07 to 17.50)</td>
<td>213 (1 RCT)(^b)</td>
<td>⬤⬤⬤⬤ MODERATE(^c)</td>
</tr>
<tr>
<td>Symptom score at day 11 (^d) vs Placebo</td>
<td>Mean 1.88 (SD 2.50)</td>
<td>Mean 1.06 (SD 1.58)</td>
<td>MD -0.78 (-1.37 to -0.20) p=0.009(^*)</td>
<td>228 (1 RCT)(^b)</td>
<td>⬤⬤⬤⬤ HIGH</td>
</tr>
<tr>
<td>vs Bamlanivimab + etesevimab</td>
<td>Mean 1.28 (SD 2.48)</td>
<td>Mean 1.06 (SD 1.58)</td>
<td>-0.22 (-0.81 to 0.37)(^f)</td>
<td>189 (1 RCT)(^b)</td>
<td>⬤⬤⬤⬤ MODERATE(^c)</td>
</tr>
<tr>
<td>Symptom score at day 22 (^d) vs Placebo</td>
<td>Mean 0.77 (SD 1.67)</td>
<td>Mean 0.46 (SD 1.16)</td>
<td>Mean difference -0.17 (-0.60 to 0.25) p=0.42(^*)</td>
<td>215 (1 RCT)(^b)</td>
<td>⬤⬤⬤⬤ MODERATE(^c)</td>
</tr>
<tr>
<td>vs Bamlanivimab + etesevimab</td>
<td>Mean 0.76 (SD 2.00)</td>
<td>Mean 0.46 (SD 1.16)</td>
<td>-0.30 (-0.77 to 0.17)(^f)</td>
<td>182 (1 RCT)(^b)</td>
<td>⬤⬤⬤⬤ MODERATE(^c)</td>
</tr>
<tr>
<td>SARS-CoV-2 clearance at day 22 (^d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: Therapeutics

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Anticipated absolute effects (95% CI)*</th>
<th>Relative effect (95% CI)</th>
<th>Number of participants (studies)</th>
<th>Certainty of evidence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risk with Placebo</td>
<td>Risk with Bammanivimab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risk with Bammanivimab (previously neutralizing antibody LY-CoV555)</td>
<td>RR 1.10 (0.80 to 1.51)</td>
<td>253 (1 RCT)b</td>
<td>★★★★ HIGH</td>
<td>Absolute effect (95% CI) 37 more per 1,000 (from 74 fewer to 188 more)</td>
</tr>
<tr>
<td>vs Placebo</td>
<td>368 per 1000</td>
<td>405 per 1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risk with Bammanivimab + etesevimab</td>
<td>RR 1.11 (0.79 to 1.56)</td>
<td>210 (1 RCT)b</td>
<td>★★★★ HIGH</td>
<td>Absolute effect (95% CI) 40 more per 1,000 (from 77 fewer to 206 more)</td>
</tr>
<tr>
<td>vs Bammanivimab + etesevimab</td>
<td>367 per 1000</td>
<td>407 per 1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of patients with any adverse events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vs Placebo</td>
<td>269 per 1000</td>
<td>266 per 1000</td>
<td></td>
<td>★★★★ HIGH</td>
<td>Absolute effect (95% CI) 3 fewer per 1,000 (from 92 fewer to 135 more)</td>
</tr>
<tr>
<td>vs Bammanivimab + etesevimab</td>
<td>170 per 1000</td>
<td>269 per 1000</td>
<td></td>
<td>★★★★ HIGH</td>
<td>Absolute effect (95% CI) 98 more per 1,000 (from 10 fewer to 280 more)</td>
</tr>
<tr>
<td>Number of patients with serious adverse events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vs Placebo</td>
<td>60 per 1000</td>
<td>31 per 1000</td>
<td></td>
<td>★★★★ MODERATE</td>
<td>Absolute effect (95% CI) 3 fewer per 1,000 (from 6 fewer to 74 more)</td>
</tr>
<tr>
<td>vs Bammanivimab + etesevimab</td>
<td>90 per 1000</td>
<td>33 per 1000</td>
<td></td>
<td>★★★★ MODERATE</td>
<td>Absolute effect (95% CI) 6 fewer per 1,000 (from 9 fewer to 71 more)</td>
</tr>
</tbody>
</table>

Source: Cruciani F, De Crescenzo F, Vecchi S, Saulle R, Mitrova Z, Amato L, Davoli M. Should LY-CoV555 antibody monotherapy compared to LY-CoV555 antibody + Etesevimab be used for COVID-19 patients? 2021

Explanations: * The risk in the intervention group is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI); b [184] Gottlieb et al [179]
1 Downgraded of one level for wide CI; 2 Authors of current rapid review; † mean and SD refer to change from baseline values as reported by the trial authors, the mean difference refers to between group differences in change from baseline as reported by the trial authors; ‡ Not reported by the trial authors but calculated by the authors of this rapid report, using the reported trial arm mean changes from baseline with standard deviations and group size in Cochrane Review Manager 5.3 software
Table 3.13-5: Summary of findings (SoF) table for published RCTs related to effectiveness and safety of bamlanivimab + etesevimab combination compared to placebo – OUTPATIENT (1 RCT: Gottlieb 2021)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Anticipated absolute effects (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>Number of participants (studies)</th>
<th>Certainty of evidence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality</td>
<td>Risk with Placebo: No deaths occurred</td>
<td>Risk with Bamlanivimab + etesevimab: No deaths occurred</td>
<td>Relative risk (RR): 0.15 (0.02 to 1.20)</td>
<td>268 (1 RCT) b</td>
<td>⊙⊙⊙⊙ ⊙⊙⊙⊙ HIGH</td>
</tr>
<tr>
<td>COVID-19 related hospitalisation or emergency department visit at day 29 d</td>
<td>58 per 1000</td>
<td>9 per 1000 (1 to 69)</td>
<td></td>
<td>268 (1 RCT) b</td>
<td>⊙⊙⊙⊙ ⊙⊙⊙⊙ HIGH</td>
</tr>
<tr>
<td>Symptom score at day 11 d</td>
<td>Mean 1.88 (SD 2.50)</td>
<td>Mean 1.28 (SD 2.48)</td>
<td>Mean difference -0.60 (-1.18 to -0.03) p=0.04</td>
<td>229 (1 RCT) b</td>
<td>⊙⊙⊙⊙ ⊙⊙⊙⊙ MODERATE c</td>
</tr>
<tr>
<td>Symptom score at day 22 d</td>
<td>Mean 0.77 (SD 1.67)</td>
<td>Mean 0.76 (SD 2.00)</td>
<td>Mean difference 0.03 (-0.38 to 0.44)</td>
<td>261 (1 RCT) b</td>
<td>⊙⊙⊙⊙ ⊙⊙⊙⊙ MODERATE c</td>
</tr>
<tr>
<td>SARS-CoV-2 clearance at day 22 d</td>
<td>368 per 1000</td>
<td>368 per 1000</td>
<td>Relative risk (RR): 1.00 (0.72 to 1.38)</td>
<td>261 (1 RCT) b</td>
<td>⊙⊙⊙⊙ ⊙⊙⊙⊙ HIGH</td>
</tr>
<tr>
<td>Number of patients with any adverse events</td>
<td>269 per 1000</td>
<td>170 per 1000</td>
<td>Relative risk (RR): 0.63 (0.39 to 1.02)</td>
<td>268 (1 RCT) b</td>
<td>⊙⊙⊙⊙ ⊙⊙⊙⊙ HIGH</td>
</tr>
<tr>
<td>Number of patients with serious adverse events</td>
<td>60 per 1000</td>
<td>83 per 1000</td>
<td>Relative risk (RR): 1.39 (0.09 to 22.03)</td>
<td>268 (1 RCT) b</td>
<td>⊙⊙⊙⊙ ⊙⊙⊙⊙ MODERATE c</td>
</tr>
</tbody>
</table>

Source: Ref Cruciani F, De Crescenzo F, Vecchi S, Saulle R, Mirova Z, Amato L, Davoli M. Should LY-CoV555 antibody + Etesevimab compared to Placebo be used for COVID-19 patients? 2021;[184] Explanations: a The risk in the intervention group is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI); b Downgraded of one level for wide CI, including the possibility of trivial or harmful effects; c Authors of current rapid review; d mean and SD refer to change from baseline values as reported by the trial authors, the mean difference refers to between group differences in change from baseline as reported by the trial authors

GRADE Working Group grades of evidence

- **High certainty:** We are very confident that the true effect lies close to that of the estimate of the effect
- **Moderate certainty:** We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
- **Low certainty:** Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
- **Very low certainty:** We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

Abbreviations: CI=confidence interval; RR=risk ratio; SAE=serious adverse event; AE=adverse event; RCT=randomised controlled trial; SD=standard deviation
Table 3.13-6: Summary of findings (SoF) table for published RCTs related to effectiveness and safety of bamlanivimab compared to standard treatment/placebo – HOSPITALISED (1 RCT: Lundgren et al. 2020)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Anticipated absolute effects (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>Number of participants (studies)</th>
<th>Certainty of evidence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risk with Standard treatment/Placebo</td>
<td>Risk with Bamlanivimab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(previously neutralizing antibody LY-CoV555)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>32 per 1000</td>
<td>53 per 1000</td>
<td>RR 1.67 (0.57 to 4.88)</td>
<td>326 (1 RCT)*</td>
<td>Absolute effect (95% CI) 21 more per 1.000 (from 14 fewer to 124 more)</td>
</tr>
<tr>
<td>Number of patients with adverse events</td>
<td>172 per 1000</td>
<td>219 per 1000</td>
<td>RR 1.27 (0.82 to 1.99)</td>
<td>326 (1 RCT)*</td>
<td>Absolute effect (95% CI) 46 more per 1.000 (from 31 fewer to 170 more)</td>
</tr>
<tr>
<td>Number of patients with serious adverse events</td>
<td>32 per 1000</td>
<td>30 per 1000</td>
<td>RR 0.93 (0.27 to 3.15)</td>
<td>326 (1 RCT)*</td>
<td>Absolute effect (95% CI) 2 fewer per 1.000 (from 23 fewer to 68 more)</td>
</tr>
<tr>
<td>Number of patients discharged</td>
<td>866 per 1000</td>
<td>846 per 1000</td>
<td>RR 0.98 (0.89 to 1.07)</td>
<td>326 (1 RCT)*</td>
<td>Absolute effect (95% CI) 17 fewer per 1.000 (from 95 fewer to 61 more)</td>
</tr>
</tbody>
</table>

* ref Lundgren et al 2020 (ACTIV-3/TICO LY-CoV555 Study group) [187]

Abbreviations: CI=Confidence interval; RR=Risk ratio
Results: Therapeutics

Regulatory update:

On April 16, 2021 FDA revoked Emergency Use Authorization (EUA) for the investigational monoclonal antibody therapy bamlanivimab (previously LY-CoV555), when administered alone, for the treatment of mild-to-moderate COVID-19 in adult and pediatric patients. Based on its ongoing analysis of emerging scientific data, specifically the sustained increase of SARS-CoV-2 viral variants that are resistant to bamlanivimab alone resulting in the increased risk for treatment failure, the FDA has determined that the known and potential benefits of bamlanivimab, when administered alone, no longer outweigh the known and potential risks for its authorized use [190].

On February 9, 2021 the FDA issued an EUA for bamlanivimab and etesevimab administered together for the treatment of mild to moderate COVID-19 in adults and pediatric patients (12 years of age or older weighing at least 40 kg [about 88 pounds]) who test positive for SARS-CoV-2 and who are at high risk for progressing to severe COVID-19. The authorized use includes treatment for those who are 65 years of age or older or who have certain chronic medical conditions. In a clinical trial of patients with COVID-19 at high risk for disease progression, a single intravenous infusion of bamlanivimab and etesevimab administered together significantly reduced COVID-19-related hospitalization and death during 29 days of follow-up compared to placebo. The safety and effectiveness of this investigational therapy for use in the treatment of COVID-19 continue to be evaluated. Bamlanivimab and etesevimab are not authorized for patients who are hospitalized due to COVID-19 or require oxygen therapy due to COVID-19. Treatment with both bamlanivimab and etesevimab has not been studied in patients hospitalized due to COVID-19. Monoclonal antibodies, such as bamlanivimab and etesevimab, may be associated with worse clinical outcomes when administered to hospitalized patients with COVID-19 requiring high flow oxygen or mechanical ventilation, https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibodies-treatment-covid-19-0.

On March 5, 2021 EMA stated that the CHMP has completed its review started in February 2021[191], to provide a harmonised scientific opinion at EU level to support national decision making on the possible use of the antibodies before a formal authorisation is issued. The Agency concluded that bamlanivimab monotherapy and bamlanivimab and etesevimab combination can be used together to treat confirmed COVID-19 in patients who do not require supplemental oxygen and who are at high risk of their COVID-19 disease becoming severe [192, 193]. Risk factors may include but are not limited to: advanced age; obesity; cardiovascular disease, including hypertension; chronic lung disease, including asthma; type 1 or type 2 diabetes mellitus; chronic kidney disease, including those on dialysis; chronic liver disease; a monos suppressed, based on prescriber’s assessment. Examp es include: cancer treatment, bone marrow or organ transplantation, immune deficiencies, HIV poorly controlled or evidence of AIDS, sickle cell anemia, thalassemia, and prolonged use of immunosuppressant medications.

3.13.3 AZD7442 - combination of two monoclonal antibodies (AZD8895 + AZD1061)

AZD7442 is a combination of two mAbs (AZD8895 + AZD1061) derived from convalescent patients with SARS-CoV-2 infection. Discovered by Vanderbilt University Medical Center and licensed to AstraZeneca in June 2020, the mAbs were optimized by AstraZeneca with half-life extension and reduced Fc receptor binding. The half-life extended mAbs should afford at least six months of protection from COVID-19.

NCT04507256 is a phase 1, first time in human, randomized, double-blind, placebo-controlled, and dose escalation study that aims to evaluate the safety, tolerability and pharmacokinetics of AZD7442 in healthy participants. Estimated study completion date is September 2021.

Larger late-stage phase 2 and phase 3 (NCT04723339, TACKLE, in outpatient adults) trials are ongoing to evaluate their efficacy as a potential preventative and treatment approach against COVID-19. ACTIV-2 phase 2/3 RCT (NCT04518410) in ambulant patients is also ongoing.

An international randomized, controlled phase 3 clinical trial has begun in February 2021, evaluating the safety and efficacy of AZD7442 for treating people hospitalized with COVID-19. The trial, part of a master protocol - ACTIV-3, has an adaptive design allowing investigators to add new sub-studies of additional investigational agents. ACTIV-3 is sponsored by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, https://www.niaid.nih.gov/news-events/news-releases/clinical-trial-hospitalized-covid-19-patients-evaluates-long-acting-antibody-therapy.

AZD7442 is currently evaluated in a phase 2/3 RCT (NCT04315948) in hospitalized patients with COVID-19. The 1240 patients enrolled in the study in Europe will be followed up over a 15-month period until November 2022. An initial analysis of the results is expected to take place at the end of 2021.

3.13.4 Sotrovimab (VIR-7831 monoclonal antibody)

VIR-7831 (Vir Biotechnology company) is a dual-action monoclonal antibody that was selected for clinical development based on its potential to both block viral entry into healthy cells and clear infected cells, as well as its potential to provide a high barrier to resistance. It has shown the ability to neutralize SARS-CoV-2 live virus in vitro. The antibody binds to an epitope on SARS-CoV-2 shared with SARS-CoV-1, indicating that the epitope is highly conserved, which may make it more difficult to escape mutants to develop. VIR-7832 has been engineered with the potential to enhance lung bioavailability, have an extended half-life, and function as a therapeutic and/or prophylactic T-cell vaccine.
A phase 2/3 COMET-ICE (COVID-19 Monoclonal antibody Efficacy Trial - Intent to Care Early) trial was launched on September 10, 2020, in which subjects with COVID-19 will receive VIR-7831 or placebo and be assessed for safety, tolerability, efficacy, and pharmacokinetics. The phase 3 part of the COMET-ICE trial is assessing the safety and efficacy of a single intravenous (IV) infusion of VIR-7831 or placebo in approximately 1,300 non-hospitalised participants globally. The primary efficacy endpoint is the proportion of adults who have progression of COVID-19 as defined by the need for hospitalization or death within 29 days of randomization. The COMET clinical development program for VIR-7831 also includes a planned phase 3 trial for the prevention of symptomatic infection.

On March 10, 2021 Vir Biotechnology, Inc. and GlaxoSmithKline plc announced that an Independent Data Monitoring Committee (IDMC) recommended that the phase 3 COMET-ICE be stopped for enrollment due to evidence of profound efficacy. The IDMC recommendation was based on an interim analysis of data from 583 patients enrolled in the COMET-ICE trial, which demonstrated an 85% (p=0.002) reduction in hospitalization or death in patients receiving VIR-7831 as monotherapy compared to placebo, the primary endpoint of the trial. VIR-7831 was well tolerated. As the trial remains ongoing and blinded with patients continuing to be followed for 24 weeks, additional results, including epidemiology and virology data, will be forthcoming once the trial is completed. Based on these results, Vir and GSK plan to submit an Emergency Use Authorization (EUA) application to the FDA and for authorizations in other countries, http://www.globenewswire.com/news-release/2021/03/11/2190921/0/en/Vir-Biotechnology-and-GSK-Announce-VIR-7831-Reduces-Hospitalization-and-Risk-of-Death-in-Early-Treatment-of-Adults-with-COVID-19.html.

On April 15, 2021 EMA starts review of VIR-7831 in the treatment of patients with COVID-19. EMA is starting this review to support national authorities who may decide on the use of this medicine for COVID-19 prior to marketing authorisation. [194]. On May 21, 2021 EMA concluded that sorvico mab can be used to treat confirmed COVID-19 in adults and adolescents (aged 12 years and over).
and above and weighing at least 40 kg) who do not require supplemental oxygen therapy and who are at risk of progressing to severe COVID-19 [195].

On May 7, 2021 EMA starts rolling review of VIR-7831, called now sotrovimab [196]. The decision to start the rolling review is based on preliminary results from an ongoing study looking at the ability of the medicine to prevent hospitalisation or death in non-hospitalised patients with COVID-19.

US COVID-19 Treatment Guidelines (last update June 11, 2021)

- The US COVID-19 Treatment Guidelines Panel recommends using one of the following combination anti-SARS-CoV-2 monoclonal antibodies to treat outpatients with mild to moderate COVID-19 who are at high risk of clinical progression, as defined by the EUA criteria (listed in alphabetical order):

 Bamlanivimab plus etesevimab; or Casirivimab plus imdevimab; or Sotrovimab.

- Treatment should be started as soon as possible after the patient receives a positive result on a SARS-CoV-2 antigen or nucleic acid amplification test (NAAT) and within 10 days of symptom onset.

- There are no comparative data to determine whether there are differences in clinical efficacy or safety between bamlanivimab plus etesevimab, casirivimab plus imdevimab, or sotrovimab.

- The Panel recommends against the use of anti-SARS-CoV-2 monoclonal antibodies for patients who are hospitalized because of COVID-19, except in a clinical trial (AIIa). However, their use should be considered for persons with mild to moderate COVID-19 who are hospitalized for a reason other than COVID-19 but who otherwise meet the EUA criteria [169].
3.13.5 Regdanvimab (CT-P59)

Regdanvimab (from Celltrion Healthcare) is a monoclonal antibody with activity against COVID-19. In pre-clinical data the treatment candidate demonstrated a 100-fold reduction in viral load of SARS-CoV-2, as well as a reduction in lung inflammation [197].

Results from the global phase 1 clinical trial of CT-P59 demonstrated promising safety, tolerability, antiviral effect and efficacy profile in patients with mild symptoms of COVID-19.

On January 13, 2021 Celltrion Group announced positive efficacy and safety results from global phase 2/3 clinical trial of COVID-19 treatment candidate CT-P59: CT-P59 (40 mg/kg) treated patients reported reduced progression rates to severe COVID-19 by 54% for patients with mild-to-moderate symptoms and 68% for moderate patients aged 50 years and over; a significantly shortened time to clinical recovery ranging from 3.4 to 6.4 days quicker compared to placebo and a significant reduction of viral load compared to placebo was reported at Day7 in patients treated with CT-P59. No drug-related serious adverse events reported, [198, 199].

On March 26, 2021 EMA announced that the CHMP has completed its review of Celltrion’s monoclonal antibody regdanvimab (CT-P59) to support national authorities who may decide on the use of this medicine for COVID-19 prior to authorisation. EMA concluded that regdanvimab can be used for the treatment of confirmed COVID-19 in adult patients who do not require supplemental oxygen therapy and who are at high risk of progressing to severe COVID-19. Risk factors may include but are not limited to advanced age; obesity; cardiovascular disease, including hypertension; chronic lung disease, including asthma; type 1 or type 2 diabetes mellitus; chronic kidney disease, including those on dialysis; chronic liver disease; immunosuppressed, based on prescriber’s assessment. Examples include: cancer treatment, bone marrow or organ transplantation, immune deficiencies, HIV if poorly controlled or evidence of AIDS, sickle cell anemia, thalassemia, and prolonged use of immune-weakening medications. The recommended dosage of regdanvimab is a single intravenous (IV) infusion of 40 mg/kg [198, 199].

On May 18, 2021 Celltrion announced that its regdanvimab (CT-P59) demonstrated neutralising potency against emerging SARS-CoV-2 variants first detected in New York, US (B.1.526), Nigeria (B.1.525) and India (B.1.617). The company plans to study neutralising titers against additional emerging strains, including the Brazil variant (P.1), in order to proactively address the pandemic as the virus continues to evolve. Regdanvimab is known to successfully neutralise the SARS-CoV-2 variants first identified in the UK (B.1.1.7), California (B.1.427/B.1.429), Brazil (P.2), in addition to the previously identified six variant genome mutations of SARS-CoV-2 (variants S-LV-GGH-GR), [198, 199].

Results: Therapeutics

monoklonaler Antikörper

Phase 1

Presseaussendung von Celltrion
to Phase 2/3 positive Ergebnisse

März 2021:
EMA „rolling review“ von Regdanvimab
für Patient*innen mit Risiko auf progrediente Erkrankung, aber ohne Bedarf nach Beatmung

Pressebericht: keine Resistenz

AIHTA| 2021
3.14 Combination therapy – triple combination of interferon beta-1b, lopinavir–ritonavir and ribavirin vs. lopinavir–ritonavir or other triple combination of interferons

The reader is referred to the earlier version (V13_April) for more details on Combination therapy related to interferon beta-1b, lopinavir and ribavirin or other triple combination of interferons.

Details in V13_April

3.15 Solnatide

About the treatment under consideration

The therapeutic molecule solnatide (INN) has been designed by APEPTICO (a privately-held biotechnology company from Vienna/Austria) for the therapeutic treatment of patients with Acute Respiratory Distress Syndrome (ARDS) and various forms of life-threatening Pulmonary Oedema (PPO). Solnatide is a synthetic peptide of less than 20 amino acids applied directly in the lower airways in the form of a liquid aerosol, aims to accelerate the dissolution of alveolar oedema and reduce barrier damage caused by Covid-19 in the lungs.

In April 2020, solnatide has been approved for Compassionate Use by the Austrian Federal Office for Safety in Health Care (BASG) for the treatment of patients infected by the novel coronavirus SARS-CoV-2 and subsequently developing severe pulmonary dysfunction (severe COVID-19), as well as by the Italian Medicines Agency and the Ethics Committee of the National Institute for Infectious Diseases (Lazzaro Spallanzani-Rome), within the compassionate use program of drugs undergoing clinical trials for the treatment of COVID-19 patients suffering from pulmonary oedema and acute respiratory distress syndrome.

APEPTICO Forschung und Entwicklung GmbH has signed, together with the “solnatide consortium”, the Grant Agreement ID: 101003595 with the European Commission to accelerate the process of making APEPTICO’s proprietary investigational medicinal product (IMP) solnatide available for medical treatment of patients severely affected by the novel coronavirus 2019 (SARS-CoV-2) disease, COVID-19; the Grant Agreement was made available via the Horizon2020 programme “Advancing knowledge for the clinical and public health response to the 2019-nCoV epidemic” (https://ec.europa.eu/commission/presscorner/detail/en/ip_20_386). Project started on 1 April 2020 and will end on 31 December 2021. The main goal of the H2020 SOLNATIDE project is to demonstrate safety, tolerability and clinical efficacy of solnatide in treatment of COVID-19 patients.

One ongoing randomised, double-blind, placebo controlled, parallel assignment trial with aim to assess efficacy and safety of 7 days orally inhaled 100 mg solnatide to treat pulmonary permeability oedema of 40 SARS-Cov-2 positive patients with moderate-to-severe ARDS is registered in EUdraCT register (EudraCT number 2020-001244-26), https://www.clinicaltrialregister.eu/ctr-search/trial/2020-001244-26/AT [200].

Medikament gegen akutes Atemnotsyndrom
Verabreichung: Inhalation

April: BASG, AIFA lassen Solnatide für “Compassionate Use” zu

EC-Grant seit April für Covid-19
bis Dezember 2021

1 laufender RCT mit 40 moderat bis schwer Covid-19 Erkrankten
3.16 Umifenovir (Arbidol®)

About the treatment under consideration

Umifenovir (Arbidol), an indole-derivative is a broad-spectrum drug against a wide range of enveloped and non-enveloped viruses: it interacts preferentially with aromatic amino acids, and it affects multiple stages of the virus life cycle, either by direct targeting viral proteins or virus-associated host factors. Umifenovir is currently being investigated as a potential treatment and prophylactic agent for COVID-19 caused by SARS-CoV2 infections in combination with both currently available and investigational HIV therapies (https://pubchem.ncbi.nlm.nih.gov/compound/Arbidol). Its use is only in China and Russia, since not approved by neither the FDA nor the EMA.

As Wang et al. 2020 recently published, arbidol efficiently inhibited SARS-CoV-2 infection in vitro (it appears to block virus entry by impeding viral attachment and release from the Ebs) [203].

Results of publications

RCT published by Yueping et al. 2020 ([NCT04252885](https://clinicaltrials.gov/ct2/show/NCT04252885)) [202] was an exploratory randomised (2:2:1) controlled trial, conducted in China, with the aim to assess the efficacy and safety of lopinavir/ritonavir or arbidol monotherapy in 86 patients with mild/moderate COVID-19. 34 of them assigned to lopinavir/ritonavir; 35 to arbidol and 17 with no antiviral medication as control, with follow-up of 21 days. The rate of positive-to-negative conversion of SARS-CoV-2 nucleic acid, as the primary endpoint, was similar between groups (all p>0.05) and there were no differences between groups in the secondary endpoints, the rates of anti-pyresis, cough alleviation, or improvement of chest CT at days 7 or 14 (all p>0.05). At day 7, eight (23.5%) patients in the LPV/r group, 3 (8.6%) in the arbidol group and 2 (11.8%) in the control group showed a deterioration in clinical status from moderate to severe/critical (p=0.206). Related to adverse events, 12 (35.3%) patients in the lopinavir/ritonavir group and 5 (14.3%) in the arbidol group experienced adverse events during the follow-up period, and no AE occurred in the control group [202].

One publication [87] on the completed RCT (ChiCTR2000030254) about the efficacy and safety of favipiravir, in comparison with umifenovir, to treat COVID-19 patients [203].
Covid-19 patients was identified; Summary of findings table can be found in Section related to favipiravir.

RCT (IRCT20180725040596N2) published by Nojomi et al. 2020, as preliminary report in the format of preprints [203], is an open label randomized controlled trial, on effectiveness of umifenevir on 100 patients with COVID-19, assigned randomly to two groups of either hydroxychloroquine just on the 1st day followed by Kaletra (lopinavir-ritonavir) or hydroxychloroquine just on the 1st day followed by umifenevir 7-14 days based on severity of disease. The duration of hospitalization in umifenevir group was less than lopinavir-ritonavir arm significantly (7.2 versus 9.6 days; p=0.02). Time to relief fever was similar across two groups (2.7 versus 3.1 days in umifenevir and lopinavir-ritonavir arms respectively). Peripheral oxygen saturation rate was different after seven days of admission across two groups significantly (94% versus 92% in umifenevir and lopinavir-ritonavir groups respectively) (p=0.02).

Yethindra et al. 2020 [204] published results from exploratory randomized controlled study recruited 30 mild and moderate COVID-19 patients in Kyrgyzstan. No patient progressed toward severe and critical illness in either category. Pneumonia was ameliorated in 76.6% (23/30) of the patients, with moderate and potential amelioration in 36.6% and 40% of the patients, respectively. Many patients were observed to have significantly ameliorated pneumonia in the umifenevir category (86.6%, 13 of 15) compared to the control category (66.6%, 10 of 15). In addition, 66.6% of patients in the umifenevir category had potential pneumonia absorption. Only one patient presented with mild side effects in the umifenevir category, while one patient had cephalalgia; notably, no patient experienced severe side effects.

The Living Systematic Review, related to these two RCTs mentioned above, with Summary of findings table (https://covid-nm.com/living_data/index.php) is presented in Table 3.16-1. According to currently available very low quality of evidence, the evidence is very uncertain about the effect of umifenevir on further outcomes: All-cause mortality D14-D28; WHO progression score level 6 or above D14-28; WHO progression score level 7 or above D14-28; Serious adverse events and Viral negative conversion D7 (RR 0.90, 95% CI 0.44 to 1.84, 1 RCT, very low certainty of evidence).
Table 3.16-1: Summary of findings table, on umifenovir vs standard care (2 RCTs: Yueping, Yethindra)

Umifenovir compared to Standard Care for Mild/Moderate COVID-19

Patient or population: Mild/Moderate COVID-19

Setting: Worldwide

Intervention: Umifenovir

Comparison: Standard Care

<table>
<thead>
<tr>
<th>Patient or population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>GRADE Working Group grades of evidence:</th>
<th>GRADE Working Group grades of evidence:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild/Moderate COVID-19</td>
<td>Umifenovir</td>
<td>Standard Care</td>
<td>High certainty: We are very confident that the true effect lies close to that of the estimate of the effect; Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different;</td>
<td>Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect</td>
</tr>
<tr>
<td>Setting: Worldwide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Anticipated absolute effect (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>NNT (95% CI)</th>
<th>CIs for the absolute effect (95% CI)</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vital signs (systolic BP)</td>
<td>11% (7 to 15)</td>
<td>0.81 (0.69 to 0.95)</td>
<td>5 (4 to 6)</td>
<td>Low certainty: We are moderately confident in the effect estimate: The true effect may be substantially different from the estimate of the effect;</td>
<td></td>
</tr>
<tr>
<td>Vital signs (diastolic BP)</td>
<td>12% (8 to 16)</td>
<td>0.68 (0.55 to 0.84)</td>
<td>17 (14 to 20)</td>
<td>Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect;</td>
<td></td>
</tr>
<tr>
<td>Adverse events</td>
<td>0% (0 to 0)</td>
<td>0% (0 to 0)</td>
<td>0 (0 to 0)</td>
<td>Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect;</td>
<td></td>
</tr>
<tr>
<td>Serious adverse events</td>
<td>0% (0 to 0)</td>
<td>0% (0 to 0)</td>
<td>0 (0 to 0)</td>
<td>Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect;</td>
<td></td>
</tr>
</tbody>
</table>

The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

GRADE Working Group grades of evidence

- **High certainty:** The true effect is likely to be close to the estimate of the effect.
- **Moderate certainty:** The true effect may be substantially different from the estimate of the effect.
- **Low certainty:** The true effect may be substantially different from the estimate of the effect.
- **Very low certainty:** We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect.

AIHTA | 2021

94
Explanations: a. Last update: November 13, 2020; b. Yueping L, 2020; c. Indirectness downgraded by 1 level: single study from a single institution, therefore results in this population might not be generalizable to other settings; d. Imprecision downgraded by 2 level: due to wide confidence interval consistent with the possibility for benefit and the possibility for harm and very low number of participants; e. Yethindra V, 2020; Yueping L, 2020; f. Risk of bias downgraded by 1 level: some concerns around deviation from intended intervention in both studies, some concerns in one study regarding randomization, outcome measurement, and selection of reported result; g. Indirectness downgraded by 1 level: results are mainly from a single study from a single institution, therefore results in this population might not be generalizable to other settings.; h. Yethindra, 2020; i. Risk of bias downgraded by 1 level: some concerns regarding randomization, deviations from intended intervention, outcome measurement, and selection of the reported results; j. Imprecision downgraded by 2 levels: no events in both groups and very low number of participants; k. Risk of bias downgraded by 1 level: some concerns regarding deviations from intended intervention in both studies, some concerns regarding randomization and selection of reported result in one study; l. Risk of bias downgraded by 1 level: some concerns regarding randomization, deviations from intended intervention, and selection of the reported results; m. Indirectness downgraded by 1 level: results from two single-institution studies, therefore results in the population might not be generalizable to other settings.; n. We presume that the adverse event rates, and the corresponding relative risks, is similar across diverse settings; therefore not downgraded for indirectness
3.17 Dexamethasone and other corticosteroids

The reader is referred to the earlier version (V13_April) for more details on dexamethasone and other systemic corticosteroids (except for inhaled corticosteroids).

3.17.1 Inhaled corticosteroids: Budesonide

About the drug under consideration

Budesonide is a type of medicine known as a steroid (also called a corticosteroid). Inhaled budesonide is a medicine used for asthma and chronic obstructive pulmonary disease (COPD).

On May 27, 2021 EMA issued advice to healthcare professionals that there is currently insufficient evidence that inhaled corticosteroids are beneficial for people with COVID-19 [205].

Results of publications

On April 9th, the results of an open-label, parallel-group, phase 2, randomised controlled trial (Steroids in COVID-19; STOIC, NCT04416399) of inhaled budesonide, compared with usual care, in adults within 7 days of the onset of mild COVID-19 symptoms was published [206]. From July 16 to Dec 9, 2020, 146 participants were randomly assigned—73 to usual care and 73 to budesonide. The number needed to treat with inhaled budesonide to reduce COVID-19 deterioration was eight. Clinical recovery was 1 day shorter in the budesonide group compared with the usual care group (median 7 days [95% CI 6 to 9] in the budesonide group vs 8 days [7 to 11] in the usual care group; log-rank test p=0.007). The mean proportion of days with a fever in the first 14 days was lower in the budesonide group (2%, SD 6) than the usual care group (8%, SD 18; Wkoxon test p=0.051) and the proportion of participants with at least 1 day of fever was lower in the budesonide group when compared with the usual care group. As-needed antipyretic medication was required for fewer proportion of days in the budesonide group compared with the usual care group (27% [IQR 0–50] vs 50% [15–71]; p=0.025) Fewer participants randomly assigned to budesonide had persistent symptoms at days 14 and 28 compared with participants receiving usual care (difference in proportions 0.204, 95% CI 0.075 to 0.334; p=0.003). Budesonide was safe, with only five (7%) participants reporting self-limiting adverse events.

On April 12th, a pre-print of an interim analyses from the PRINCIPLE trial was published [207]. PRINCIPLE is a multicentre, open-label, multi-arm adaptive platform randomised controlled trial involving people aged ≥65 years, or ≥50 years with comorbidities, and unwell ≤14 days with suspected COVID-19 in the community (PRINCIPLE). Participants were randomised to usual care, usual care plus inhaled budesonide (800µg twice daily for 14 days), or usual care plus other interventions. The trial opened on April 2, 2020. Randomisation to inhaled budesonide began on November 27, 2020 and was stopped on March 31, 2021 based on an interim analysis using data from March 4, 2021. Here, we report updated interim analysis data from March 25, 2021, at which point the trial had randomised 4663 participants with suspected COVID-19. Of these, 2617 (56.1%) tested SARS-CoV-2 positive and contributed data to this interim budesonide primary analysis; 751
budesonide, 1028 usual care and 643 to other interventions. Time to first self-reported recovery was shorter in the budesonide group compared to usual care (hazard ratio 1.208 [95% BCI 1.076 – 1.356], probability of superiority 0.999, estimated benefit [95% BCI] of 3.011 [1.134 – 5.41] days). Among those in the interim budesonide primary analysis who had the opportunity to contribute data for 28 days follow up, there were 59/692 (8.5%) COVID-19 related hospitalizations/deaths in the budesonide group vs 100/968 (10.3%) in the usual care group (estimated percentage benefit, 2.1% [95% BCI −0.7% – 4.8%], probability of superiority 0.928). In this updated interim analysis, inhaled budesonide reduced time to recovery by a median of 3 days in people with COVID-19 with risk factors for adverse outcomes. Once 28 day follow up is complete for all participants randomized to budesonide, final analyses of time to recovery and hospitalization/death will be published. (Funded by the National Institute of Health Research/United Kingdom Research Innovation [MC_PC_19079]; PRIORITY ISRCTN number, ISRCTN86534580.)

Table 3.17-1: Summary of findings table, on budesonide vs standard care (2 RCTs: Ramakrishnan, Yu)

Budesonide compared to Standard Care for Mild COVID-19

Patient or population: Mild COVID-19
Setting: Worldwide Outpatient
Intervention: Budesonide
Comparison: Standard Care

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Anticipated absolute effects (95% CI) a</th>
<th>Relative effect (95% CI)</th>
<th>Number of participants (studies)</th>
<th>Certainty of evidence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality D28</td>
<td>Outcome not yet measured or reported</td>
</tr>
<tr>
<td>Clinical improvement D28</td>
<td>Outcome not yet measured or reported</td>
</tr>
<tr>
<td>WHO progression score (level 7 or above) D28</td>
<td>Outcome not yet measured or reported</td>
</tr>
<tr>
<td>Number of patients with adverse events</td>
<td>Outcome not yet measured or reported</td>
</tr>
<tr>
<td>Number of patients with serious adverse events</td>
<td>0 per 1000</td>
<td>0 per 1000</td>
<td>RR: 5.23 (0.25 - 108.86)</td>
<td>2112 (1 RCT)b</td>
<td>OOOO? VERY LOW</td>
</tr>
</tbody>
</table>

a The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI)

b Yu, 2021
c Risk of bias: Serious

Risk of bias downgraded by 1 level: some concerns deviation from intended intervention, missing data and outcome measurement Imprecision: Very serious due to very wide confidence interval consistent with the possibility for benefit and the possibility for harm and low number of participants
3.18 Anakinra (Kineret®)

About the drug under consideration

Anakinra (Kineret®) is an immunosuppressive medicine, a copy of a natural human protein - human interleukin 1 receptor antagonist (IL-1ra), produced in Escherichia coli cells by recombinant DNA technology. Anakinra neutralises the biological activity of interleukin-1α (IL-1α) and interleukin-1β (IL-1β) by competitively inhibiting their binding to interleukin-1 type I receptor (IL-1RI). Interleukin-1 (IL-1) is a pivotal pro-inflammatory cytokine mediating many cellular responses including those important in synovial inflammation. Anakinra is not authorised in Covid-19 patients (EMA, FDA).

The US COVID-19 Treatment Guidelines Panel stated that there are insufficient data to recommend either for or against interleukin-1 inhibitors (e.g., anakinra) therapy in patients with COVID-19 disease [86].

Withdrawn, suspended or terminated studies

One RCT was found as suspended – ANACONDA (NCT04364009) – due to efficiency and safety reasons, after enrolment of 71 hospitalized COVID-19 patients in France. The intermediate review of data from this clinical trial showed early excess mortality in the group of patients treated with anakinra combined with standard optimised care, compared to the group of patients treated with standard optimised care alone. On October 29, 2020, the French National Agency for Medicines and Health Products Safety (ANSM) announced that inclusions in clinical trials evaluating anakinra in the treatment of COVID-19 are suspended due to safety information regarding the ANACONDA-COVID-19 clinical trial, https://ansmat.fr/S-informer/Actualite/Suspension-des-inclusions-en-France-dans-les-essais-cliniques-evaluant-l-anakinra-dans-la prise-en-charge-de-la-COVID-19. Poirier information. In December 2020, ANSM lifted the suspension of trials with anakinra because after further analysis in France and the EU, the risk was not confirmed.

Two RCTs were found as terminated: NCT04366232 (JAKINCOV), due to investigator decision in France, on anakinra alone and in combination with ruxolitinib, and NCT04324021 in Italy and US because of recruitment issues.

Currently, anakinra is investigated as a third option in the second randomisation for children >1 year old with hyperinflammatory syndrome associated with COVID-19 in children (PIMS-TS) in the RECOVERY (Randomised Evaluation of Covid-19 Therapy) trial, led by the University of Oxford [165].

Results of publications

Currently, two publications related to an RCT of anakinra treatment in COVID-19 patients were found.

The CORIMUNO-19 Collaborative group published results from a multicentre, open-label, Bayesian randomised clinical trial (CORIMUNO-ANA-1, NCT04341584), nested within the CORIMUNO-19 cohort, in France with mild to moderate COVID-19 pneumonia, severe acute respiratory syndrome coronavirus 2 infection confirmed by real-time RT-PCR, requiring at least 3 L/min of oxygen by mask or nasal cannula but without ventilation

AIHTA| 2021 98
assistance, a score of 5 on the WHO Clinical Progression Scale (WHO-CPS),
and a C reactive protein serum concentration of more than 25 mg/L not
requiring admission to the intensive care unit at admission to hospital [208].
Eligible patients were randomly assigned (1:1), stratified by centre and
blocked with varying block sizes (randomly of size two or four), to either usual
care plus anakinra (200 mg twice a day on days 1–3, 100 mg twice on day 4,
100 mg once on day 5) or usual care alone. The study was stopped early,
following the recommendation of the data and safety monitoring board, after
the recruitment of 116 patients: 59 were assigned to the anakinra group and
57 were assigned to the usual care group.

Kyriazopoulou et al. 2021 [209] (NCT04680949, EUdraCT 2020-005828-11)
published as preprint results from the SAVE-MORE multicenter trial, 594
hospitalised patients with moderate and severe COVID-19 pneumonia and
plasma suPAR 6 ng/ml or more and receiving standard-of-care were 1:2
randomised to subcutaneous treatment with placebo or 100 mg anakinra once
daily for 10 days. The primary endpoint was the overall clinical status of the
11-point World Health Organization ordinal Clinical Progression Scale
(WHO-CPS) at day 28. The changes of the WHO-CPS and of the sequential
organ failure assessment score were the main secondary endpoints.
Baseline characteristics and co-administered treatments were similar between
the two arms. Majority of patients (81.6%) has severe COVID-19.

Effectiveness and safety data summary can be found in the Summary of
Findings Table 3.18-1. Low certainty evidence from two published RCTs (one
stopped early and one published as preprint) in hospitalised patients with
moderate to severe COVID-19 showed that anakinra, compared to standard
care/placebo, may reduce all-cause mortality at day 28 (RR 0.69, 95% CI 0.34
to 1.39; 32 fewer per 1,000, 95% CI from 68 fewer to 40 more). Anakinra
probably increase clinical improvement at day 28 (RR 1.12, 95% CI 1.03 to
1.21; 88 more per 1,000, 95% CI from 22 more to 155 more, moderate certainty
of evidence). Anakinra, compared to standard care/placebo, may reduce
WHO progression score (level 7 or above) at day 28 (RR 0.67, 95% CI 0.36 to
1.22; 55 fewer per 1,000, 95% CI from 107 fewer to 37 more, low certainty
of evidence). The evidence is very uncertain about the effect of anakinra on the
number of patients with any adverse events (RR 1.22, 95% CI 0.81 to 1.83; 89
more per 1,000, 95% CI from 77 fewer to 335 more, very low certainty of
evidence) and the number of patients with serious adverse events (RR 0.97,
95% CI 0.61 to 1.52; 7 fewer per 1,000, 95% CI from 96 fewer to 128 more, very
low certainty of evidence) [210].
Table 3.18-1: Summary of findings table, on anakinra (2 RCTs: CORIMUNO-19 Collaborative group, Kyriazopoulou - SAVE-MORE)

Patient or population: COVID-19 patients (moderate to severe)

Setting: Worldwide Inpatient

Intervention: Anakinra

Comparison: Standard care/Placebo

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Anticipated absolute effects (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>Number of participants (studies)</th>
<th>Certainty of evidence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Risk with Standard treatment</td>
<td>Risk with Anakinra</td>
<td>RR: 0.69 (0.34 - 1.39)</td>
<td>722 (2 RCTs)³⁺</td>
<td>Absolute effect (95% CI)</td>
</tr>
<tr>
<td></td>
<td>104 per 1000</td>
<td>71 per 1000</td>
<td></td>
<td></td>
<td>32 fewer per 1000 (from 68 fewer to 40 more)</td>
</tr>
<tr>
<td>All-cause mortality at 28 days</td>
<td>Clinical improvement D28</td>
<td>737 per 1000</td>
<td>RR: 1.12 (1.03 - 1.21)</td>
<td>722 (2 RCTs)³⁺</td>
<td>Absolute effect (95% CI)</td>
</tr>
<tr>
<td></td>
<td>WHO progression score (level 7 or above) D28</td>
<td>167 per 1000</td>
<td>RR: 0.67 (0.36 - 1.22)</td>
<td>722 (2 RCTs)³⁺</td>
<td>55 fewer per 1000 (from 107 fewer to 37 more)</td>
</tr>
<tr>
<td></td>
<td>Number of patients with any adverse event</td>
<td>404 per 1000</td>
<td>RR: 1.22 (0.81 - 1.83)</td>
<td>116 (1 RCT)³</td>
<td>Absolute effect (95% CI)</td>
</tr>
<tr>
<td></td>
<td>Number of patients with serious adverse events</td>
<td>247 per 1000</td>
<td>RR: 0.97 (0.61 - 1.52)</td>
<td>722 (2 RCTs)³⁺</td>
<td>Absolute effect (95% CI)</td>
</tr>
</tbody>
</table>

Source: [211]; **Abbreviations:** CI = Confidence interval; RR = Risk ratio; **Explanations:** a The risk in the intervention group is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI); b [208] c [209] d Imprecision: Very serious due to very wide confidence interval consistent with the possibility for benefit and the possibility for harm; e Risk of bias: Serious Risk of bias downgraded by 1 level:some concerns regarding adequate randomization and outcome measurement; f Inconsistency: Serious Inconsistency downgraded by 1 level: I²=60%; Imprecision: Serious due to wide confidence interval consistent with the possibility for no effect and the possibility for harm; g Risk of bias: Serious Risk of bias downgraded by 1 level: some concerns regarding outcome measurement and selection of the reported result Indirectness: Serious despite a multicentre design this is a single study from a single country, therefore results in this population might not be generalizable to other settings. Imprecision: Serious due to wide confidence interval consistent with the possibility for no effect and the possibility for harm; h Risk of bias: Serious Risk of bias downgraded by 1 level: some concerns regarding adequate randomization, outcome measurement, and selection of the reported result Inconsistency: Serious Inconsistency downgraded by 1 level: I²=62% Imprecision: Serious due to wide confidence interval consistent with the possibility for benefit and the possibility for harm
3.19 Colchicine

About the drug under consideration

Colchicine is an alkaloid isolated from the autumn crocus, Colchicum autumnale, with anti-gout and anti-inflammatory activities. Colchicine is available throughout the world in a generic form [212].

Colchicine is not authorised in Covid-19 patients (EMA, FDA).

The US COVID-19 Treatment Guidelines Panel stated that there are insufficient data to recommend either for or against the use of colchicine in nonhospitalised patients with COVID-19. The Panel recommends against the use of colchicine in hospitalised patients, except in a clinical trial [AIII] [86].

Withdrawn, suspended or terminated studies

One RCT was found as withdrawn because no funding is available (NCT04603690; no suspended or terminated interventional studies were found on colchicine in ClinicalTrials.gov and EUDraCT registries).

Results of publications

Deferreos et al. 2020 [213] reported results from open-label, randomized controlled trial (NCT04326790) on 105 patients hospitalised with COVID-19 in 16 tertiary hospitals in Greece (randomization in a 1:1 allocation to either standard medical treatment or colchicine with standard medical treatment). Patient recruitment was terminated on April 27, 2020, because of slow enrolment as a result of the rapid flattening of the curve of COVID-19 cases in Greece. The clinical primary endpoint rate was 14.0% in the control group (7 of 50 patients) and 1.8% in the colchicine group (1 of 55 patients) (odds ratio, 0.11; 95% CI, 0.01-0.96; p=0.02). Mean (SD) event-free survival time was 18.6 (0.83) days in the control group vs 20.7 (0.31) in the colchicine group (log rank p=0.03). Adverse events were similar in the 2 groups, except for diarrhea, which was more frequent with colchicine group than the control group (25 patients [45.5%] vs 9 patients [18.0%]; p=0.003).

Salehzadeh et al. 2020 [214] reported results (as preprint) from prospective, open-label, randomized and double-blind clinical trial, in 100 patients hospitalised with COVID-19 in Iran (IRCT20200418047126N1). Patients were randomized in a 1:1 allocation, to either standard medical treatment (hydroxychloroquine) or colchicine with standard medical treatment. Colchicine group were received 1 mg tablet of colchicine daily along with the hydroxychloroquine for 6 days. Duration of hospitalisation and duration of fever were significantly different between patients groups, in favour of colchicine (p<0.05). Although in colchicine group dyspnea was improved more rapidly than the placebo group, there were no statistically significant differences. None of the patients died or were readmitted.

Lopes et al. 2020 [215], reported (as preprint) interim results of a single-center, randomized, double-blinded, placebo controlled clinical trial of colchicine for the treatment of 38 moderate to severe COVID-19 patients in Brazil. Thirty-five patients (18 for placebo and 17 for colchicine) completed the study. Median (and interquartile range) time of need for supplemental oxygen was 3.0 (1.5-6.5) days for the colchicine group and 7.0 (3.0-8.5) days for placebo group (p=0.02). Median (IQR) time of hospitalization was 6.0 (4.0-8.5) days for the colchicine group and 8.5 (5.5-11.0) days for placebo group (p=0.03). At day 2, 53% vs 83% of patients maintained the need for supplemental oxygen, while at day 7 the values were 6% vs 39%, in the toxisches Alkaloid wirkt als Zeiglöffel (Mitosehemmung)
generisch
US COVID-19 Treatment Guidelines Panel insuffiziente Datenlage

1 RCT zurückgezogen

1 publizierter RCT (Griechenland):
105 Pts.

klinisch gering-relevanter Unterschied bei Verbesserung der Erkrankung

viele Surrogatendpunkte niedrige Evidenz

RCT preprint (Iran)
100 Pts.

kein Unterschied

RCT preprint (Brasilien)
38 Pts.

Reduktion von Sauerstoffsupplementierung und von Hospitalisierung
Results: Therapeutics

colchicine and placebo groups, respectively (log rank; \(p=0.01 \)). Hospitalization was maintained for 53% vs 78% of patients at day 5 and 6% vs 17% at day 10, for the colchicine and placebo groups, respectively (log rank; \(p=0.01 \)). One patient per group needed admission to ICU. No recruited patient died. At day 4, patients of colchicine group presented significant reduction of serum C-reactive protein compared to baseline (\(p<0.001 \)). The majority of adverse events were mild and did not lead to patient withdrawal. Diarrhea was more frequent in the colchicine group (\(p=0.17 \)). Cardiac adverse events were absent.

Tardif et al. 2021 [216] published preprint results from randomized, double-blind trial involving non-hospitalised patients with COVID-19 diagnosed by polymerase chain reaction (PCR) testing or clinical criteria (COLCORONA, NCT04322682). The patients were randomly assigned to receive colchicine (0.5 mg twice daily for 3 days and once daily thereafter) or placebo for 30 days. The primary efficacy endpoint was the composite of death or hospitalization for COVID-19 [216]. Among the 4159 patients with PCR-confirmed COVID-19, the primary endpoint occurred in 4.6% and 6.0% of patients in the colchicine and placebo groups, respectively (odds ratio, 0.75; 95% CI, 0.57 to 0.99; \(p=0.04 \)). The odds ratios were 0.75 (95% CI, 0.57 to 0.99) for hospitalization due to COVID-19, 0.50 (95% CI, 0.23 to 1.07) for mechanical ventilation, and 0.56 (95% CI, 0.19 to 1.66) for death. Serious adverse events were reported in 4.9% and 6.3% in the colchicine and placebo groups (\(p=0.05 \)); pneumonia occurred in 2.9% and 4.1% of patients (\(p=0.02 \)). Diarrhea was reported in 13.7% and 7.3% in the colchicine and placebo groups (\(p<0.001 \)).

On March 5, 2021 RECOVERY trial chief investigators announced that recruitment to the colchicine arm of the RECOVERY trial has now closed. The independent Data Monitoring Committee (DMC) saw no convincing evidence that further recruitment would provide conclusive proof of worthwhile mortality benefit either overall or in any pre-specified subgroup. RECOVERY Collaborative Group published negative results as preprint [217]: in adults hospitalised with COVID-19, colchicine was not associated with reductions in 28-day mortality, duration of hospital stay, or risk of progressing to invasive mechanical ventilation or death. 5610 patients were randomly allocated to receive colchicine and 5730 patients to receive usual care alone. Overall, 1173 (21%) patients allocated to colchicine and 1190 (21%) patients allocated to usual care died within 28 days (rate ratio 1.01; 95% confidence interval [CI] 0.93-1.01; \(p=0.77 \)). Consistent results were seen in all pre-specified subgroups of patients. There was no significant difference in duration of hospitalisation (median 10 days vs. 10 days) or the proportion of patients discharged from hospital alive within 28 days (70% vs. 70%; rate ratio 0.98; 95% CI 0.94-1.03; \(p=0.44 \)). Among those not on invasive mechanical ventilation at baseline, there was no significant difference in the proportion meeting the composite endpoint of invasive mechanical ventilation or death (25% vs. 25%; risk ratio 1.02; 95% CI 0.96-1.09; \(p=0.47 \)).

Summary of finding table related to colchicine compared to standard care for hospitalised COVID-19 patients, related to 4 RCTs mentioned above, is presented in Table 3.19-1 below. According to currently available evidence, the evidence is uncertain about the effect of colchicine on outcome. All-cause mortality D28 (RR 0.63, 95% CI 0.20 to 1.95, 4 RCTs, low certainty of evidence). Colchicine does not increase C-reactive protein D28 (RR 0.99, 95% CI 0.97 to 1.01, 2 RCTs, high certainty of evidence). The evidence is very uncertain about the effect of colchicine on WHO progression score level 7 or above D28 (RR 0.16, 95% CI 0.02 to 1.29, 1 RCT, very low certainty of evidence). Adverse events (RR 1.25, 95% CI 0.63 to 2.46, 1 RCT; very low certainty of evidence).
Results: Therapeutics

certainty of evidence) and Serious adverse events (Zero events in both groups, 1 RCT, very low certainty of evidence).
Table 3.19-1: Summary of findings table on **colchicine compared to standard care** (4 RCTs: Deftereos, Lopes, Salehzadeh, RECOVERY Collaborative Group) - https://covid-nma.com/living_data/index.php

Colchicine compared to Standard care or Placebo for Hospitalised COVID-19 (last update 04/06/2021)

Patient or population: Hospitalised COVID-19
Setting: Worldwide
Intervention: Colchicine
Comparison: Standard care or Placebo

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Anticipated absolute effects (95% CI) d</th>
<th>Relative effect (95% CI)</th>
<th>Number of participants (studies)</th>
<th>Certainty of evidence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality D28</td>
<td>204 per 1000</td>
<td>RR: 0.63 (0.20 - 1.95)</td>
<td>11625 (4 RCTs) b</td>
<td>LOW f</td>
<td>Absolute effect (95% CI) 75 fewer per 1000 (from 163 fewer to 194 more)</td>
</tr>
<tr>
<td>Clinical improvement D28</td>
<td>699 per 1000</td>
<td>RR: 0.99 (0.97 - 1.01)</td>
<td>11415 (2 RCTs) c</td>
<td>HIGH</td>
<td>Absolute effect (95% CI) 7 fewer per 1000 (from 21 fewer to 7 more)</td>
</tr>
<tr>
<td>WHO progression score (level 7 or above) D28</td>
<td>111 per 1000</td>
<td>RR: 0.16 (0.02 - 1.29)</td>
<td>110 (1 RCT) d</td>
<td>VERY LOW g</td>
<td>Absolute effect (95% CI) 93 fewer per 1000 (from 109 fewer to 32 more)</td>
</tr>
<tr>
<td>Number of patients with adverse events</td>
<td>421 per 1000</td>
<td>RR 1.25 (0.63 to 2.46)</td>
<td>38 (1 RCT) e</td>
<td>VERY LOW h</td>
<td>Absolute effect (95% CI) 105 more per 1000 (from 156 fewer to 615 more)</td>
</tr>
<tr>
<td>Number of patients with serious adverse events</td>
<td>0 per 1000</td>
<td>RR -</td>
<td>110 (1 RCT) d</td>
<td>VERY LOW i</td>
<td>Zero events in both groups</td>
</tr>
</tbody>
</table>

GRADE Working Group grades of evidence: **High certainty:** We are very confident that the true effect lies close to that of the estimate of the effect; **Moderate certainty:** We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different; **Low certainty:** Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect; **Very low certainty:** We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect.
The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI):

- Imprecision: Very serious due to wide confidence interval consistent with the possibility for benefit and the possibility for harm;
- Indirectness: Serious despite a multicentre design this is a single study from a single country, therefore results in this population might not be generalizable to other settings. Imprecision: Very serious Imprecision downgraded by 2 level: due to very wide confidence interval consistent with the possibility for benefit and the possibility for harm and low number of participants;
- Risk of bias: Serious Risk of bias downgraded by 1 level: some concerns regarding missing data and selection of reported results Indirectness: Serious single study from a single institution therefore results in this population might not be generalizable to other settings Imprecision: Very serious due to very wide confidence interval consistent with the possibility for benefit and the possibility for harm and low number of participants; I Risk of bias: Serious Risk of bias downgraded by 1 level: some concerns regarding deviation from intended intervention and outcome measurement Indirectness: Serious despite a multicentre design this is a single study from a single country, therefore results in this population might not be generalizable to other settings. Imprecision: Very serious no events in both groups and low number of participants.
3.20 Nafamostat (Futhan®)

About the drug under consideration
Nafamostat mesilate (FUT-175, Futhan®, Nichiko Pharmaceutical) is (with implications on coagulation, fibrinolysis, complement system inffa mmatory cytokine release) and is quickly hydrolysed, the reason why it is typically administered as an intravenous drip. Nafamostat is not approved for any use by EMA or FDA.

Withdrawn, suspended or terminated studies
No withdrawn, suspended or terminated interventional studies were found on nafamostat in ClinicalTrials.gov and EUDraCT registers.

Results of publications
Until now, no scientific publication on randomized clinical trials of nafamostat in Covid-19 patients could be identified.

3.21 Gimsilumab

About the drug under consideration
Gimsilumab is a fully human monoclonal antibody that acts on granulocyte-macrophage colony-stimulating factor (GM-CSF) [1]; it is manufactured by Roviant Sciences Ltd./AltaSciences. Gimsilumab – ATC-code not assigned yet. Gimsilumab belongs to anti-inflammatory, antirheumatics, monoclonal antibodies drug class and has no approval for any indication by EMA or FDA yet.

Withdrawn, suspended or terminated studies
No withdrawn, suspended or terminated interventional studies were found on gimsilumab in ClinicalTrials.gov and EUDraCT registers.

Results of publications
There are no published results from RCTs related to effectiveness and safety of gimsilumab for Covid-19 treatment; one Phase II study of gimsilumab is ongoing, estimated study completion date is March 2021 [218, 219].

3.22 Canakinumab

About the drug under consideration
Canakinumab is a human monoclonal anti-human interleukin-1 beta (IL-1 beta) antibody of the IgG1/κ isotype manufactured by Novartis Pharmaceutical AG. Canakinumab binds with high affinity specifically to human IL-1 beta and neutralises the biological activity of human IL-1 beta by blocking its
interaction with IL-1 receptors, thereby preventing IL-1 beta-induced gene activation and the production of inflammatory mediators [220]. Canakinumab is not authorised in Covid-19 patients (EMA, FDA).

Withdrawn, suspended or terminated studies

No withdrawn, suspended or terminated interventional studies were found on canakinumab in ClinicalTrials.gov and EUDRA CT registers.

Results of publications

There are no published RCTs related to effectiveness and safety of canakinumab for Covid-19. Two studies of canakinumab are still ongoing: one Phase III study, estimated study completion date on December 2020 and one Phase II study, estimated completion date on December 2020 [221-223].

Manufacturer recently announced preliminary interim results from the CAN-COVID trial: the CAN-COVID trial failed to meet its primary endpoint showing that treatment with canakinumab plus standard of care (SoC) did not demonstrate a significantly greater chance of survival for patients without the need for invasive mechanical ventilation, compared with placebo plus SoC up to Day 29. The trial did not meet its key secondary endpoint of reducing the COVID-19-related death rate during the 4-week period after treatment. The safety profiles of canakinumab plus SoC and placebo plus SoC were comparable (https://www.novartis.com/coronavirus/can-covid-clinical-trial).

3.23 Lenzilumab

About the drug under consideration

Lenzilumab is a first-in-class Humaneered® recombinant monoclonal antibody targeting human GM-CSF, with potential immunomodulatory activity, high binding affinity in the picomolar range, 94% homology to human germline, and has low immunogenicity. Following intravenous administration, lenzilumab binds to and neutralizes GM-CSF, preventing GM-CSF binding to its receptor, thereby preventing GM-CSF-mediated signaling to myeloid progenitor cells. The inhibition of GM-CSF signaling may be beneficial in improving the hyperinflammation-related lung damage in the most severe cases of COVID-19. This blockade can be achieved through antagonism of the GM-CSF receptor or the direct binding of circulating GM-CSF [224, 225].

Lenzilumab is not authorised in Covid-19 patients (EMA, FDA). FDA has approved the administration of lenzilumab for COVID-19 patients under individual patient emergency IND applications to patients under the company's compassionate use program.

Withdrawn, suspended or terminated studies

No withdrawn, suspended or terminated interventional studies were found on lenzilumab in ClinicalTrials.gov and EUDRA CT registers.
Results of publications

Currently, results from one RCT were published as preprint related to effectiveness and safety of lenzilumab for Covid-19. Temesgen et al. 2021 [226] published results from LIVE-AIR phase 3 randomized, double-blind, placebo-controlled trial investigating the efficacy and safety of lenzilumab to assess the potential of lenzilumab to improve the likelihood of ventilator-free survival (referred to herein as survival without ventilation, SWOV), beyond standard supportive care, in hospitalized subjects with severe COVID-19 (NCT04351152). Subjects with COVID-19 (n=520), ≥18 years, and ≤94% oxygen saturation on room air and/or requiring supplemental oxygen, but not invasive mechanical ventilation, were randomized to receive lenzilumab (600 mg, n=261) or placebo (n=259) via three intravenous infusions administered 8 hours apart. Subjects were followed through Day 28 following treatment. Baseline demographics were comparable between the two treatment groups: male, 64.7%; mean age, 60.5 years; mean BMI, 32.5 kg/m²; mean CRP, 98.36 mg/L; CRP was <150 mg/L in 77.9% of subjects. The most common comorbidities were obesity (55.1%), diabetes (53.4%), chronic kidney disease (14.0%), and coronary artery disease (13.6%). Subjects received steroids (93.7%), remdesivir (72.4%), or both (69.1%). Lenzilumab improved the likelihood of SWOV by 54% in the mITT population (HR: 1.54; 95%CI: 1.02-2.31, p=0.041) and by 90% in the ITT population (HR: 1.90; 1.02-3.52, nominal p=0.043) compared to placebo. SWOV also relatively improved by 92% in subjects who received both corticosteroids and remdesivir (1.92; 1.20-3.07, nominal p=0.0067); by 2.96-fold in subjects with CRP<150 mg/L and age <85 years (2.96; 1.63-5.37, nominal p=0.0003); and by 88% in subjects hospitalized ≤2 days prior to randomization (1.88; 1.13-3.12, nominal p=0.015). Survival was improved by 2.17-fold in subjects with CRP<150 mg/L and age <85 years (2.17; 1.04-4.54, nominal p=0.040).

3.24 Vitamin D

About the drug under consideration

Vitamin D (ergocalciferol-D2, cholecalciferol-D3) is a fat-soluble vitamin increases the intestinal absorption of calcium and phosphate. Vitamin D is absorbed from the intestine and transported by protein binding in the blood to the liver (first hydroxylation to 25-hydroxycholecalciferol) and to the kidney (2nd hydroxylation to 1,25- dihydroxycholecalciferol, active metabolite responsible for increasing calcium absorption). It has been claimed as potentially protective against the infection since it may be associated with immune competence, inflammation, aging, and those diseases involved in determining the outcomes of COVID-19 [227]. VI OLET RCT (NCT03096314) of early high-dose enteral vitamin D3 supplementation in critically ill, vitamin D-deficient patients who were at high risk for death did not provide an advantage over placebo with respect to 90-day mortality or other, nonfatal outcomes among critically ill, vitamin
D–deficient patients [228], RCTs to assess efficacy and safety of vitamin D in COVID-19 patients are underway.

Vitamin D is not authorised in Covid-19 patients (EMA, FDA).

The US COVID-19 Treatment Guidelines Panel stated that there are insufficient data to recommend either for or against the use of vitamin D for the prevention or treatment of COVID-19 [169].

Withdrawn, suspended or terminated studies

No withdrawn or suspended, and 1 terminated (NCT04810949, enrolled patients were vaccinated against COVID-19) interventional studies were found on Vitamin D in ClinicalTrials.gov and EUdraCT registers.

Results of publications

Entrenas Castillo et al. 2020 [229] published results from parallel pilot randomized open label, double-masked clinical trial on 76 consecutive patients hospitalised with COVID-19 infection in Spain (NCT04366908). Eligible patients were allocated at a 2 calcifiedol:1 no calcifiedol ratio, through electronic randomization on the day of admission to take oral calcifiedol (0.532 mg), or not. Patients in the calcifiedol treatment group continued with oral calcifiedol (0.266 mg) on day 3 and 7, and then weekly until discharge or ICU admission. Of 50 patients treated with calcifiedol, one required admission to the ICU (2%), while of 26 untreated patients, 13 required admission (50%), p < 0.001. Calcifiedol or 25-hydroxyvitamin D, a main metabolite of vitamin D, significantly reduced the need for ICU treatment of patients requiring hospitalization due to proven COVID-19: Univariate Risk Estimate Odds Ratio for ICU in patients with Calcifiedol treatment versus without Calcifiedol treatment: 0.02 (95% CI 0.002-0.17). Multivariate Risk Estimate Odds Ratio for ICU in patients with Calcifiedol treatment vs Without Calcifiedol treatment ICU (adjusting by Hypertension and T2DM): 0.03 (95% CI: 0.003-0.25). Of the patients treated with calcifiedol, none died, and all were discharged, without complications. The 13 patients not treated with calcifiedol, who were not admitted to the ICU, were discharged. Of the 13 patients admitted to the ICU, two died and the remaining 11 were discharged.

Rastogi et al. 2020 [230] published results from randomized, placebo-controlled trial (NCT04459247, SHADE) on 40 COVID-19 adult asymptomatic or mildly symptomatic SARS-CoV-2 RNA positive vitamin D deficient individual intervention (n=16) or control (n=24) group, with outcomes measure: Proportion of patients with SARS-CoV-2 RNA negative before day-21 and change in inflammatory markers. 10 (62.5%) participants in the intervention group and 5 (20.8%) participants in the control arm (p<0.018) became SARS-CoV-2 RNA negative. Fibrinogen levels significantly decreased with cholecalciferol supplementation intervention difference 0.70 mg/ml; p=0.007) unlike other inflammatory markers.

Murai et al. 2020 [231] presented as pre-print results from double-blind, randomised, placebo-controlled trial involving 240 hospitalised patients with severe COVID-19, in Brasil (NCT04449718). A single dose of 200,000 IU of vitamin D3 supplementation was safe and effective in increasing 25-hydroxyvitamin D levels, but did not significantly reduce hospital length of stay (hazard ratio, 1.12) or any other 10 clinically-relevant outcomes compared with placebo.
Summary of Finding table related to Vitamin D compared to Standard care/Placebo for mild/moderate/severe COVID-19 patients, related to 3 RCTs mentioned above, is presented in Table 3.24-1 below. The evidence is very uncertain about the effect of Vitamin D on outcomes: All-cause mortality D14-D28 (RR 0.56, 95% CI 0.05 to 5.85, 2 RCTs, very low certainty of evidence) and WHO progression score (level 7 or above) D14-D28 (RR 0.04, 95% CI 0.01 to 0.29, 1 RCT, very low certainty of evidence). Vitamin D may not increase Adverse events (RR 2.98, 95% CI 0.12 to 72.30, 1 RCT, low certainty of evidence).
Table 3.24-I: Summary of findings table on Vitamin D compared to standard care (3 RCT: Entrenas Castillo, Rastogi, Murai) - https://covid-nma.com/living_data/index.php

Vitamin D compared to Standard care/Placebo for Mild/Moderate/Severe COVID-19

Patient or population: Mild/Moderate/Severe COVID-19

Setting: Worldwide

Intervention: Vitamin D

Comparison: Standard care/Placebo

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effect* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of participants (denominator)</th>
<th>Outcome of the intervention (95% CI)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cause mortality ≥70y (≥60y)</td>
<td>10 per 1000 (9 to 24)</td>
<td>RR: 0.52 (95% CI 0.36 to 0.75)</td>
<td>71</td>
<td>4/20</td>
<td>GRADE</td>
</tr>
<tr>
<td>All cause mortality <70y (≥60y)</td>
<td>6 per 1000 (3 to 12)</td>
<td>RR: 0.67 (95% CI 0.47 to 0.93)</td>
<td>71</td>
<td>4/20</td>
<td>GRADE</td>
</tr>
<tr>
<td>Adverse events</td>
<td>0 per 1000 (2 per 2000)</td>
<td>RR: 1.33 (95% CI 0.24 to 7.70)</td>
<td>237</td>
<td>4/20</td>
<td>GRADE</td>
</tr>
<tr>
<td>Serious adverse events - not reported</td>
<td>0 per 1000 (2 per 2000)</td>
<td>RR: 1.33 (95% CI 0.24 to 7.70)</td>
<td>237</td>
<td>4/20</td>
<td>GRADE</td>
</tr>
</tbody>
</table>

*The rate in the intervention group (and 95% confidence interval) is based on the assumed rate in the comparator group and the relative effect of the intervention (and 95% CI).

GRADE Working Group grades of evidence:

| High certainty | We are very confident that the true effect lies close to that of the estimate of the effect.
| Moderate certainty | We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
| Low certainty | Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect.
| Very low certainty | We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect.

Explanations: a. Last updated: 06 December, 2020; b. Entrenas Castillo M, J Steroid Biochem Mo, 2020; c. Risk of bias downgraded by 1 level: some concerns regarding adequate randomization and deviations from intended interventions; d. Indirectness downgraded by 1 level: results are from a single study from a single institution, therefore results in this population might not be generalizable to other settings; e. Imprecision downgraded by 1 level: due to low number of events and participants; f. Entrenas Castillo M, J Steroid Biochem Mo, 2020; Murai I, medRxiv, 2020; g. Inconsistency downgraded by 1 level: I² = 58.9%; h. Imprecision downgraded by 2 levels: due to very wide confidence interval consistent with the possibility for benefit and the possibility for harm and low number of events and participants; i. Murai I, medRxiv, 2020; j. We presume that the adverse event rates and the corresponding relative risks, are similar across diverse settings; therefore not downgraded for indirectness.
3.25 Olumiant (Baricitinib)

About the drug under consideration

Baricitinib is a selective and reversible inhibitor of Janus kinase (JAK)1 and JAK2. Janus kinases (JAKs) are enzymes that transduce intracellular signals from cell surface receptors for a number of cytokines and growth factors involved in haematopoiesis, inflammation and immune function. Baricitinib (Olumiant) is indicated in EU for the treatment of moderate to severe active rheumatoid arthritis in adult patients who have responded inadequately to, or who are intolerant to one or more disease-modifying anti-rheumatic drugs and for the treatment of moderate to severe atopic dermatitis in adult patients who are candidates for systemic therapy [232, 233].

Baricitinib (Olumiant) has not been approved by the European Medicines Agency (EMA). On November 19, 2020, the U.S. Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the distribution and emergency use of baricitinib to be used in combination with remdesivir in hospitalised adult and pediatric patients two years of age or older with suspected or laboratory confirmed COVID-19 who require supplemental oxygen, invasive mechanical ventilation, or extracorporeal membrane oxygenation (ECMO) [234].

On April 29, 2021 EMA starts evaluating an application to extend the use of baricitinib (Olumiant) to include treatment of COVID-19 in hospitalised patients from 10 years of age who require supplemental oxygen [235].

The US COVID-19 Treatment Guidelines Panel (last update May 27, 2021) recommends using either baricitinib (BIIa) or tocilizumab (BIIa) (listed alphabetically) in combination with dexamethasone alone or dexamethasone plus remdesivir for the treatment of COVID-19 in hospitalised patients on high-flow oxygen or non-invasive ventilation who have evidence of clinical progression or increased markers of inflammation. Among hospitalised patients with hypoxemia who require supplemental oxygen therapy, there is insufficient evidence to identify which patients would benefit from the addition of baricitinib or tocilizumab to dexamethasone with or without remdesivir. Some Panel members would add either baricitinib or tocilizumab to patients who are exhibiting signs of systemic inflammation and rapidly increasing oxygen needs while on dexamethasone, but who do not yet require high-flow oxygen or non-invasive ventilation [169].

In the rare circumstances where corticosteroids cannot be used, the Panel recommends using baricitinib in combination with remdesivir for the treatment of COVID-19 in hospitalised, non-inubated patients who require oxygen supplementation (BIIa). There is insufficient evidence for the Panel to recommend either for or against the use of baricitinib in combination with dexamethasone for the treatment of COVID-19 in hospitalised patients who require invasive mechanical ventilation.

The Panel recommends against the use of baricitinib in combination with tocilizumab for the treatment of COVID-19, except in a clinical trial (AIII). Because both baricitinib and tocilizumab are potent immunosuppressants, there is the potential for an additive risk of infection.

There is insufficient evidence for the Panel to recommend either for or against the use of baricitinib for the treatment of COVID-19 in children [169].
Withdrawn, suspended or terminated studies

No withdrawn, suspended or terminated interventional studies were found on baricitinib in ClinicalTrials.gov and EUdraCT registers. There are several ongoing RCTs, evaluating baricitinib alone (8 RCTs and one nRCT) or in combination with other pharmaceuticals (5 RCTs), in Covid-19 hospitalised patients. One is the RECOVERY (Randomised Evaluation of COVID-19 therApY) trial, led by the University of Oxford [165].

Results of publications: Baricitinib in combination with remdesivir

On December 11, 2020, Kalil et al. [236] published results from the Adaptive COVID-19 Treatment Trial (ACTT-2) (NCT04401579), multicentre, double-blind, randomised, placebo-controlled trial evaluating baricitinib plus remdesivir with remdesivir alone in hospitalised adults with Covid-19 in eight countries. Effectiveness and safety data summary can be found in the Summary of Findings Table 3.25-1. High certainty evidence from one published RCT, ACTT-2 trial, showed that baricitinib in combination with remdesivir does not reduce All-cause mortality, but reduces the number of patients with any adverse events as well as the number of patients with serious adverse events. Combination of baricitinib and remdesivir significantly reduced median time to recovery in hospitalised COVID-19 patients from eight days to seven days, compared to remdesivir treatment alone. Patients who required high-flow oxygen or non-invasive ventilation during hospitalisation appeared to have had the largest benefit: their median time to recovery was shortened from eighteen days to ten days. Participants’ conditions at day 15 was significantly improved when they received the two therapeutics combined. The incidence of progression to death or non-invasive or invasive ventilation was statistically significant lower in the combination of baricitinib and remdesivir vs remdesivir alone, as was the incidence of progression to death or invasive ventilation [237].

Results of publications: Baricitinib monotherapy (in addition to standard care)

On May 3, 2021 Marconi et al. [238] published as pre-print results from phase 3, global, double-blind, randomised, placebo-controlled trial COV-BARRIER (NCT04421027). 1525 hospitalised adults with COVID-19 receiving standard of care (SOC) were randomly assigned (1:1) to once-daily baricitinib 4-mg (n=764) or placebo (n=761) for up to 14 days. SOC included systemic corticosteroids in ~79% of participants (dexamethasone ~90%). The primary endpoint was the proportion who progressed to high-flow oxygen, non-invasive ventilation, invasive mechanical ventilation, or death by day 28. A key secondary endpoint was all-cause mortality by day 28. 27.8% of participants receiving baricitinib vs 30.5% receiving placebo progressed (primary endpoint, odds ratio 0.85, 95% CI 0.67-1.08; p=0.18). The 28-day all-cause mortality was 8.1% for baricitinib and 13.1% for placebo, corresponding to a 38.2% reduction in mortality (hazard ratio [HR] 0.57, 95% CI 0.41-0.78; nominal p=0.002); 1 additional death was prevented per 20 baricitinib-treated participants. Reduction in mortality was seen for all prespecified subgroups of baseline severity (most pronounced for participants on high-flow oxygen/non-invasive ventilation at baseline [17.5%, baricitinib vs 29.4%, placebo; HR 0.52, 95% CI 0.33-0.80; nominal p=0.007]). The frequency of adverse events, serious adverse events, serious infections, and venous thromboembolic events was similar between groups.

Phase 3 RCT COV-BARRIER 1.525 hospitalisierte Pts bessere Ergebnisse bei 28-Tage Gesamt mortalität mit Baricitinib
Results from COVID-NMA Meta-analysis show that baricitinib monotherapy compared to placebo significantly reduced COVID-19 related all-cause mortality at day 28 (Risk ratio 0.62, 95% CI 0.46 to 0.83). Baricitinib monotherapy compared to placebo does not significantly increase clinical improvement (Risk ratio 1.00, 95% CI 0.95 to 1.05), adverse events (Risk ratio 1.00, 95% CI 0.89 to 1.12) and serious adverse events (Risk ratio 0.81, 95% CI 0.64 to 1.02). Summary of finding table and certainty of evidence will be provided in the next versions of this report, https://covidnma.com/living_data/index.php/allcomp#comparisons_div.
Table 3.25-1: Summary of findings table, on baricitinib + remdesivir (1 RCT: Kalil 2020)

Question: Should Baricitinib-Remdesivir compared to Standard treatment (placebo/remdesivir) be used for COVID-19 patients?

Setting: Inpatient

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Anticipated absolute effects (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>Absolute effect (95% CI)</th>
<th>Number of participants (studies)</th>
<th>Certainty of evidence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality</td>
<td>71 per 1000</td>
<td>RR 0.65 (0.40 to 1.07)</td>
<td>25 fewer per 1.000</td>
<td>1033 (1 RCT)*</td>
<td>☢☢☢☢</td>
<td>Baricitinib in combination with remdesivir does not reduce All-cause mortality</td>
</tr>
<tr>
<td>Number of patients with any adverse events</td>
<td>432 per 1000</td>
<td>RR 0.85 (0.73 to 0.99)</td>
<td>65 fewer per 1.000</td>
<td>1016 (1 RCT)*</td>
<td>☢☢☢☢</td>
<td>Baricitinib in combination with remdesivir reduces the risk of AE</td>
</tr>
<tr>
<td>Number of patients with serious adverse events</td>
<td>210 per 1000</td>
<td>RR 0.76 (0.59 to 0.99)</td>
<td>50 fewer per 1.000</td>
<td>1013 (1 RCT)*</td>
<td>☢☢☢☢</td>
<td>Baricitinib in combination with remdesivir reduces the risk of serious AE</td>
</tr>
</tbody>
</table>

Abbreviations: RR = Risk ratio; CI = Confidence interval; AE = Adverse event; SAE = Serious adverse event
3.26 Molnupiravir

About the drug under consideration

Molnupiravir is the orally available pro-drug of the nucleoside analogue N4-hydroxycytidine (NHC), which has shown potent anti-influenza virus activity in mice, guinea pigs, ferrets and human airway epithelium organoids. Animal studies in ferrets showed that therapeutic treatment of infected animals with molnupiravir (MK-4482/IDD-2801) twice a day significantly reduced the SARS-CoV-2 load in the upper respiratory tract and completely suppressed spread to uninfected contact animals [239, 240].

Molnupiravir attacks the same viral enzyme as Gilead’s Remdesivir, but can be taken orally. This would allow an administration at home and, therefore, earlier in the course of the disease. According to Ridgeback Biotherapeutics, molnupiravir has an extremely high barrier to resistance. According to Merck Sharp & Dohme/ MSD, molnupiravir is aimed at the treatment of Covid-19 in patients hospitalised due to mild, moderate or severe disease, and non-hospitalized patients with mild or moderate disease [240].

Molnupiravir is not approved by the European Medicines Agency (EMA) or the American Food and Drug Administration (FDA) [240].

Withdrawn, suspended or terminated studies

No withdrawn, suspended or terminated interventional studies were found on molnupiravir in ClinicalTrials.gov and EUdraCT registers.

Results of publications

There are no published RCTs related to effectiveness and safety of molnupiravir for Covid-19. It is currently investigated in phase 1/2, 2 and 2/3 clinical trials (NCT04405570, NCT04405739, NCT04575584, NCT04575597, ISRCTN27106947), in hospitalised and non-hospitalised adults with COVID-19.

On March 6, 2021 Merck and Ridgeback Biotherapeutics, LP announced preliminary results from Ridgeback’s phase 2a randomized, double-blind, placebo-controlled trial to evaluate the safety, tolerability, and efficacy to eliminate SARS-CoV-2 viral RNA of molnupiravir (IDD-2801/MK-4482), on one secondary objective, showing a reduction in time (days) to negativity of infectious virus isolation in nasopharyngeal swabs from participants with symptomatic SARS-CoV-2 infection, as determined by isolation in Vero cell line culture. At day 5, there was a reduction (nominal p=0.001, not controlled for multiplicity) in positive viral culture in subjects who received molnupiravir (all doses) compared to placebo: 0% (0/47) for molnupiravir and 24% (6/25) for placebo. Of 202 treated participants, no safety signals have been identified and of the 4 serious adverse events reported, none were considered to be study drug related, https://www.businesswire.com/news/home/20210305005610/en/.
On April 15, 2021 Merck and Ridgeback Biotherapeutics provided an update on the clinical development program for molnupiravir. Based on a planned interim analysis of data from the phase 2, dose-escalating portion (Part 1) of two ongoing placebo-controlled phase 2/3 trials evaluating molnupiravir administered twice a day for five days in outpatients (MOVe-OUT) and hospitalized patients (MOVe-IN) with COVID-19, and from a previously completed phase 2a dose-ranging study in outpatients, the decision has been made to proceed with the phase 3 portion (Part 2) of MOVe-OUT in outpatients with COVID-19, evaluating the 800 mg dose of molnupiravir twice daily. Data from MOVe-IN indicate that molnupiravir is unlikely to demonstrate a clinical benefit in hospitalised patients, who generally had a longer duration of symptoms prior to study entry; therefore, the decision has been made not to proceed to phase 3. Final data from the Phase 3 portion (Part 2) of the MOVe-OUT study is estimated to be available in September/October 2021, https://www.merck.com/news/merck-and-ridgeback-biotherapeutics-provide-update-on-progress-of-clinical-development-program-for-molnupiravir-and-investigational-oral-therapeutic-for-the-treatment-of-mild-to-moderate-covid-19/

3.27 Ivermectin

About the drug under consideration

Ivermectin (manufactured by Merck Sharp & Dohme as Mectizan and Stromectol tablets a 3 mg) is a semi-synthetic, antihelminthic agent for oral administration. Ivermectin is derived from the avermectins, a class of highly active broad-spectrum anti-parasitic agents isolated from the fermentation products of Streptomyces avermitilis. It is indicated for the treatment of the following infections: Strongyloïdiasis of the intestinal tract and the treatment of onchocerciasis due to the nematode parasite Onchocerca volvulus, https://www.merck.com/product/usa/pi_circulars/s/stromectol/stromectol_pi.pdf. On the WHO’s Model List of Essential Medicines it is retained in the form of a 3 mg tablet. For parasitic infections in adults, ivermectin is commonly administered as a single 12 mg oral dose (0.2 mg/kg).

Recently, Caly et al. 2020 [241] reported that ivermectin in vitro is an inhibitor of the causative virus (SARS-CoV-2), with a single addition to Vero-HSLAM cells 2 h post infection with SARS-CoV-2 able to effect ~5000-fold reduction in viral RNA at 48 h. Ivermectin therefore warrants further investigation for possible benefits in humans. Ivermectin is not approved for Covid-19 by the European Medicines Agency (EMA) or the American Food and Drug Administration (FDA). On March 22, 2021 EMA advises against use of ivermectin for the prevention or treatment of COVID-19 outside randomised clinical trials [242].

keine Wirksamkeit bei hospitalisierten Pts

Phase 3 RCT: nur ambulante Pts

Beschaffungsverhandlungen in USA

zugelassen als Mectizan und Stromectol gegen parasitäre Infektionen (z.B. Onchozerkose)

von EMA und FDA nicht für covid-19 zugelassen

Empfehlung GEGEN einen Anwendung außerhalb von klinischen Studien
The US COVID-19 Treatment Guidelines Panel Statement (February 11, 2021) [86] [169] is: Currently there are insufficient data to recommend either for or against the use of ivermectin for the treatment of COVID-19. Results from adequately powered, well-designed, and well-conducted clinical trials are needed to provide more specific, evidence-based guidance on the role of ivermectin for the treatment of COVID-19.

The WHO Therapeutics and COVID-19 living guideline [243, 244] includes a recommendation not to use ivermectin except in the context of a clinical trial. Such recommendation is based on the living systematic review and network meta-analysis (NMA) that pooled data from 16 randomized controlled trials (RCTs) with 2407 participants, including both inpatients and outpatients with COVID-19. The effects of ivermectin on mortality, need for invasive mechanical ventilation, hospital admission, duration of hospitalization and time to viral clearance all remain very uncertain (all very low certainty evidence). The uncertainty results from important concerns related to risk of bias in the included studies, and imprecision from a very low number of events and, in some cases, wide confidence intervals (CIs) in pooled estimates. Ivermectin may increase the risk of serious adverse events (SAEs) leading to drug discontinuation (odds ratio [OR] 3.07; 95% CI: 0.77–12.09; low certainty evidence) and may have little or no impact on time to clinical improvement (mean difference [MD] 0.5 fewer days; 95% CI: 1.7 fewer days to 1.1 more days; low certainty evidence). There was no credible subgroup effect based on dose. Subgroup analyses were not performed examining between-study differences in age or illness severity as per our pre-defined decision to limit subgroup analysis to within-study comparisons.

Withdrawn, suspended or terminated studies

No withdrawn, suspended or terminated interventional studies were found on ivermectin in COVID-19 patients in ClinicalTrials.gov and EUdraCT registers.

Results of publications

Several RCTs compared ivermectin vs standard care, published in scientific journals or as preprint, showed positive or negative results on different clinical outcomes in COVID-19 patients [245-250]. Podder et al. 2020 [245] published negative results from single-centre, open-label, randomized controlled trial in 62 mild to moderate COVID-19 patients. Total recovery time from the onset of symptoms to complete resolution of symptoms was not significantly different (intervention arm 10.09 ± 3.236 days, compared to 11.50 ± 5.32 days in the control arm (95% CI -0.860, 3.627, p>0.05). The same was true for results of negative repeat RT-PCR.

Krolewiecki et al. 2020 [246] published positive results from a pilot, randomized, controlled, outcome-assessor blinded clinical trial with the goal of evaluating the anti-viral activity of high dose ivermectin in mild or moderate COVID-19 patients (NCT004381884). 45 patients were randomized in a 2:1 ratio to standard of care plus oral ivermectin at 0.6 mg/kg/day for 5 days versus standard of care. There was no difference in viral load reduction between groups but a significant difference in reduction was found in patients with higher median plasma ivermectin levels (72% IQR 59 – 77) versus untreated controls (42% IQR 31 – 73) (p=0.004). The mean ivermectin plasma concentration levels also showed a positive correlation with viral decay rate (r=0.47, p=0.02). Adverse events were reported in 5 (33%) patients in the controls and 13 (43%) in the ivermectin treated group, without a relationship between ivermectin plasma levels and adverse events.

Results: Therapeutics

The US COVID-19 Treatment Guidelines Panel Statement (February 11, 2021) [86] [169] is: Currently there are insufficient data to recommend either for or against the use of ivermectin for the treatment of COVID-19. Results from adequately powered, well-designed, and well-conducted clinical trials are needed to provide more specific, evidence-based guidance on the role of ivermectin for the treatment of COVID-19.

The WHO Therapeutics and COVID-19 living guideline (basierend auf NMA vbon 16 RCTs):

Empfehlung gegen Ivermectin (außer in klin. Studien)

Withdrawn, suspended or terminated studies

keine abgebrochenen oder zurückgezogenenen Studien

Results of publications

mehrere RCTs

RCT, 62 Pts. milde bis moderate Krankheit
kein Unterschied

RCT, 45 Pts. milde bis moderate Krankheit
kein Unterschied bei Viruslastreduktion, aber bei Pts. mit höher Plasma Konzentration
Results: Therapeutics

Ahmed et al. 2020 [247] published positive results from randomised, double-blind, placebo-controlled trial in 72 hospitalised adult SARS-CoV-2 patients who were assigned to one of three groups: oral ivermectin alone (12 mg once daily for 5 days), oral ivermectin in combination with doxycycline (12 mg ivermectin single dose and 200 mg doxycycline on day 1, followed by 100 mg every 12 h for the next 4 days), and a placebo control group. Clinical symptoms of fever, cough, and sore throat were comparable among the three groups. Viral clearance was earlier in the 5-day ivermectin treatment group compared to the placebo group (9.7 days vs 12.7 days; p = 0.02), but this was not the case for the ivermectin + doxycycline arm (11.5 days; p = 0.27). There were no severe adverse drug events recorded in the study.

Chachar et al. 2020 [248] published negative results from open label randomised control trial in 50 mild COVID-19 patients, divided into two groups: ivermectin group received 12 mg stat and then 12 mg after 12 hours and 12 mg after 24 hours, and control group. There was no significant difference on outcome improvement of symptoms between case group who were given ivermectin along with symptomatic treatment and control group who were only given symptomatic treatment without ivermectin, on day 7 at follow up (p = 0.50).

Niaee et al. 2020 [249] published positive results from 45-days randomised, double-blind, placebo-controlled, multicenter, phase 2 clinical trial in 180 mild to severe hospitalised COVID-19 patients (RCT20200408046987N1). The participants were randomly allocated to six arms including common regimens (Hydroxychloroquine 200 mg/kg twice per day), placebo plus common regimens, single dose ivermectin (200 mg/Kg, 1 pill per day), three low interval doses of ivermectin (200, 200, 200 mg/Kg, 3 pills in 1, 3 and 5 interval days), single dose ivermectin (400 mg/Kg, 2 pills per day), and three high interval doses of ivermectin (400, 200, 200 mg/Kg, 4 pills in 1, 3 and 5 interval days). Ivermectin significantly reduced the rate of mortality, low O2 duration, and duration of hospitalisation in adult COVID 19 patients.

Babalola et al. 2021 [250] published results from a translational proof of concept randomised, double-blind placebo controlled, dose response, parallel group study of ivermectin efficacy in RT-PCR proven mild to moderate COVID 19 positive patients (SRCTN40302986). 62 patients were randomised to three treatment groups: ivermectin 6 mg regimen, ivermectin 12 mg regimen (given Q84hrs for 2weeks); control group Lopinavir/Ritonavir. All groups plus standard of care. The Days to COVID negativity [DIN] was significantly and dose dependently reduced by ivermectin (p = 0.0066). 12 mg ivermectin regimen may have superior efficacy.

Ravikirti et al. 2021 [251] published as preprint results from RCT in adult patients with mild to moderate COVID-19 in India (randomised to ivermectin 12 mg on day 1 and day 2 of admission or placebo) (CTRI/2020/08/027225). A total of 115 patients were enrolled for the study of which 112 were included in the final analysis. Of the 55, 55 were randomised to the intervention arm while 57 were randomised to the placebo arm. There was no significant difference in the primary outcome, i.e. negative RT-PCR status on day 6 between the two groups and in most of the secondary outcome measures, symptom status on day 6, discharge status on day 10, admission to ICU, and need for invasive mechanical ventilation. There was no in-hospital mortality in the intervention arm. There were 4 deaths in the placebo arm. As a result, all patients in the intervention arm (n = 56) were successfully discharged as compared to 93.1% (n = 54/58) in the placebo arm (RR 1.1, 95% CI 1.0 to 1.2, p = 0.019).

AIHTA| 2021 119

RCT, 72 Pts, hospitalisiert
klinische Symptome: kein Unterschied
gewisse zeitliche
Verkürzung der Viruslast

RCT, 50 Pts. milde Erkrankung
kein Unterschied

RCT, 180 Pts. mild bis schwere Erkrankung, hospitalisiert
Vorteile bei Mortalität,
Dauer der Hospitalisierung

RCT, 62 Pts. milde bis moderate Erkrankung
Reduktion der Erkrankungsdauer

RCT (Indien)
115 Patient*innen
keine Unterschiede in verschiedenen Endpunkten
ev. bei Mortalität
Results: Therapeutics

Lopez-Medina et al. 2021 [252] published negative results from a double-blind, randomized trial conducted at a single site in Colombia (NCT04405843). Patients with mild COVID-19 were randomized to receive ivermectin, 300 μg/kg of body weight per day for 5 days (n = 200) or placebo (n = 200). A 5-day course of ivermectin, compared with placebo, did not significantly improve the time to resolution of symptoms. The most common solicited adverse event was headache, reported by 104 patients (52%) given ivermectin and 111 (56%) who received placebo. The most common serious adverse event was multiorgan failure, occurring in 4 patients (2 in each group).

Mohan et al. 2021 published as preprint negative results from RCT conducted in 157 mild to moderate COVID-19 patients (CTRI/2020/06/026001) [253]: patients were randomized to elixir formulation of ivermectin in 24 mg, 12 mg or placebo in 1:1:1 ratio. 125 patients were included in mITT analysis. Forty patients each were assigned to ivermectin 24 mg and 12 mg, and 45 patients to placebo. The RT-PCR negativity at day 5 was not statistically significant different compared to placebo (ivermectin 24 mg, 47.5%; 12 mg, 35.0%; and placebo, 31.1%; p=0.30). The decline of viral load at day 5 was similar in the three arms. No serious adverse events were encountered.

Okumus et al. 2021 [254] published as preprint results from RCT conducted in severe COVID-19 patients in Turkey (36 patients received ivermectin 200 mg/kg/day for 5 days vs reference treatment in 30 patients). Clinical outcomes were not statistically significantly different compared to standard treatment: Clinical improvement: 22/30 (73.3%) compared to the control group 16/30 (53.3%), (p=0.10) and Mortality: 6 patients (20%) in the study group and 9 (30%) patients in the control group (p=0.37).

Shah Bukhari et al. 2021 [255] published as preprint results from RCT (NCT04392713) conducted in mild to moderate COVID-19 patients treated with ivermectin (single dose of 12 milligrams) along with standard of care treatment (n=50) vs standard of care (n=50). There was early viral clearance in ivermectin group as compared to group received standard of care (p=0.001). No adverse reaction was noted in the intervention arm during the trial period.

Gonzales et al. 2021 [256] published as preprint results from RCT on patients with COVID-19 induced pneumonia and hospitalization criteria, but no severe respiratory failure. Patients were randomized to one of three groups: Group1-hydroxychloroquine, 400 mg every 12 hours on the first day and subsequently, 200 mg every 12 hours for 4 days, Group 2 ivermectin, 12 mg or 18 mg according to patient weight and, Group 3-placebo. No difference in hospitalization duration was found between the treatment groups (Group1: 7 vs Group 2: 6 vs Group 3: 5, p=0.43) nor in respiratory deterioration or death (Group 1: 18 % vs Group 2: 22.2 % vs Group 3: 24.3 %, p =0.83).

Pott-Junior et al. 2021 [257] reported results from RCT on 32 mild COVID-19 patients who received standard of care (SOC) treatment at hospital admission: SOC plus ivermectin 100 mg/kg; SOC plus ivermectin 200 mg/kg; or SOC plus ivermectin 400 mg/kg. All patients exhibited a reduction in SARS-CoV-2 viral load within 7 days; those who received ivermectin had a more consistent decrease as compared to the SOC alone group, characterized by a shorter time for obtaining two consecutive negative SARS-CoV-2 RT-PCR tests. No serious adverse events were reported.
Chahla et al. 2021 [258] published as preprint results from cluster randomised trial in outpatient care, n=254 (NCT04784481). The subjects were divided into experimental (EG: n=110) and control groups (CG: n=144). The EG received ivermectin orally 4 tablets of 6 mg = 24 mg every 7 days for 4 weeks. Both groups were similar in age, sex, and comorbidities. A significant reduction in the percentage of participants with symptoms was observed in the EG and CG when the clinical evaluation of symptoms was performed from 10th to 9th day (p=0.0005). When the clinical evaluation was performed from 10th to 14th day there was no significant difference. A higher proportion of outpatient discharge was observed in EG (98.2%) vs. CG (86.1%) (p=0.0019). EG showed 8 times more chance of receiving discharge than CG (87/1 CI [199, 038]; p=0.004).

Abd-Elsalam et al. 2021 [259] published results from randomized open-label controlled study that included 164 hospitalised patients with COVID-19 (NCT04403555). Patients were randomised into two groups where Group 1 (Ivermectin group) included patients who received ivermectin 12 mg once daily for 3 days with standard care and Group 2 (control group) included patients who received standard protocol of treatment alone for 14 days. The main outcomes were mortality, the length of hospital stay, and the need for mechanical ventilation. All patients were followed up for 1 month. Overall, 82 individuals were randomised to receive ivermectin plus standard of care and 82 to receive standard of care alone. Patients in the ivermectin group had a shorter length of hospital stay (8.82 ± 4.94 days) than the control group (10.97 ± 5.28 days), but this was not statistically significant (p=0.085). Three patients (3.7%) in each group required mechanical ventilation (p=1.00). The death rate was three patients in the ivermectin group (3.7%) versus four patients (4.9%) in the control group without any significant difference between the two groups (p=1.00).

Biber et al. 2021 [260] published as preprint results from double-blind trial compared patients receiving ivermectin 0.2 mg/kg for 3 days vs. placebo in non-hospitalised COVID-19 patients (NCT 044297411). Primary endpoint was reduction of viral-load on the 6th day (third day after termination of treatment). Eligible patients were included in the ivermectin and 42 in the placebo arm. There were no statistical differences in these parameters between the two groups. On day 6, 34 out of 47 (72%) patients in the ivermectin arm reached the endpoint, compared to 21/42 (50%) in the placebo arm (OR 2.62; 95% CI: 1.09-6.31). In a multi-variable logistic-regression model, the odds of a negative test at day 6 was 2.62 times higher in the ivermectin group (95% CI: 1.06-6.45). Cultures at days 2 to 6 were positive in 3/23 (13.0%) of ivermectin samples vs. 14/29 (48.2%) in the placebo group (p=0.008).

Shahbaznejad et al. 2021 [261] published results from randomised, double-blind clinical trial in patients with COVID-19 admitted to 2 referral tertiary hospitals in Mazandaran, Iran (RCT20111224008507N3). The intervention group received a single weight-based dose (0.2 mg/kg) of ivermectin; the control group received the standard of care. The primary clinical outcome measures were the durations of hospital stay, fever, dyspnea, and cough; and overall clinical improvement. The mean durations of dyspnea were 2.6 (0.4) days in the ivermectin group and 3.8 (0.4) days in the control group (p=0.048). Also, persistent cough lasted for 3.1 (0.4) days in the ivermectin group compared to 4.8 (0.4) days in control group (P=0.019). The mean durations of hospital stay were 7.1 (0.5) days versus 8.4 (0.6) days in the ivermectin and control groups, respectively (p=0.016). The frequency of lymphopenia decreased to 14.3% in the ivermectin group and did not change in the control group (p=0.007).
3.28 Aspirin (acetylsalicylic acid)

About the drug under consideration

Aspirin (acetylsalicylic acid) is a non-steroidal anti-inflammatory drug with strong anti-inflammatory, anti-thrombotic and analgesic pharmacological effects. Long-term low-dose aspirin (75-150 mg daily) can effectively prevent the incidence of ischaemic cardiovascular and cerebrovascular event. Acetylsalicylic acid inhibits the platelet activation: blocking the platelet cyclooxygenase by acetylation, it inhibits thromboxane A2 synthesis, a physiological activating substance released by the platelets and which would play a role in the complications of the atherothrombotic lesions. The repeated doses from 20 to 325 mg involve an inhibition of the enzymatic activity from 30 to 95%. Due to the irreversible nature of the binding, the effect persists for the lifespan of a thrombocyte (7-10 days). The inhibiting effect does not exhaust during prolonged treatments and the enzymatic activity gradually

SAMHA et al. 2021 [262] published results from randomized controlled trial conducted in 100 asymptomatic Lebanese subjects that have tested positive for SARS-CoV2 (ChiCTR2000033627). Fifty patients received standard preventive treatment, mainly supplements, and the experimental group received a single dose (according to body weight) of ivermectin in addition to the same supplements the control group received. There was no significant difference (p = 0.06) between Q-values of the two groups before the regimen was started (day zero), indicating that subjects in both groups had similar viral loads. At 72 h after the regimen started, the increase in Q-values was dramatically higher in the ivermectin than in the control group. In the ivermectin group, Q increased from 15.13 ± 2.07 (day zero) to 30.14 ± 6.22 (day three; mean ± SD), compared to the control group, where the Q values increased only from 14.20 ± 2.48 (day zero) to 18.96 ± 3.26 (day three; mean ± SD). More subjects in the control group developed clinical symptoms. Three individuals (6%) required hospitalisation, compared to the ivermectin group (0%).

According to the meta-analysis of 3 RCTs (Khan Chachar, 2020; Chaccour, 2021; Lopez-Medina, 2021) related to ivermectin vs standard care in mild COVID-19 patients in outpatient setting the evidence is uncertain about the effect of ivermectin on several outcomes: Clinical improvement D28; WHO progression score (level 7 or above) D28; All-cause mortality D28; and Serious adverse events (low certainty of evidence). Ivermectin probably does not increase Adverse events (moderate certainty of evidence).

According to the meta-analysis of 8 RCTs (Shah Bukari, 2021; Ahmed, 2020; Mohan, 2021; Podder, 2020; Kirti, 2021; Okumus, 2021; Potti-Junior H, 2021; Kishoria N, 2020) related to ivermectin vs standard care in hospitalised COVID-19 patients the evidence is uncertain about the effect of ivermectin on several outcomes: Clinical improvement D28; WHO progression score (level 7 or above) D28; and Adverse events (low certainty of evidence). The evidence is very uncertain about the effect of ivermectin on further outcomes: All-cause mortality D28; Viral negative conversion D7; and Serious adverse events (very low certainty of evidence).

The Summary of findings tables will be provided in next version of this report.

Metaanalyse von 3 RCTs ambulante Pts mit milder/ moderater Erkr.

unsichere Evidenz zur Wirksamkeit

Metaanalyse von 8 RCTs hospitalisierte Pts

unsichere Evidenz zur Wirksamkeit

Metaanalyse von 8 RCTs ambulante Pts mit milder/ moderater Erkr.

dsicht-steroidales Antirheumatikum

schmerzstillender, entzündungshemmender und iebersenkender und

Thrombozyten-

aggregationshemmender Arzneistoff
Patients with COVID-19 are at higher risk of blood clots forming in their blood vessels. Platelets, small cell fragments in the blood that stop bleeding, seem to be hyperreactive in COVID-19 and may be involved in clotting complications. Since aspirin is an antiplatelet agent, it may reduce the risk of blood clots in patients with COVID-19.

Chow et al. 2020 [263] published results from retrospective, observational cohort study of adult patients admitted with COVID-19 to multiple hospitals in the United States between March 2020 and July 2020. 412 patients were included in the study. 314 patients (76.3%) did not receive aspirin, while 98 patients (23.7%) received aspirin within 24 hours of admission or 7 days prior to admission. Aspirin use had a crude association with less mechanical ventilation (35.7% aspirin vs. 48.4% non-aspirin, p=0.03) and ICU admission (38.8% aspirin vs. 51.0% non-aspirin, p=0.04), but no crude association with in-hospital mortality (26.5% aspirin vs. 23.2% non-aspirin, p=0.51). After adjusting for 8 confounding variables, aspirin use was independently associated with decreased risk of mechanical ventilation (adjusted HR 0.56, 95% CI 0.37-0.85, p=0.007), ICU admission (adjusted HR 0.57, 95% CI 0.38-0.85, p=0.005), and in-hospital mortality (adjusted HR 0.53, 95% CI 0.31-0.90, p=0.02). There were no differences in major bleeding (p=0.69) or overt thrombosis (p=0.82) between aspirin users and non-aspirin users. Authors concluded that a sufficiently powered randomized controlled trial is needed to assess whether a causal relationship exists between aspirin use and reduced lung injury and mortality in COVID-19 patients.

Aspirin is not approved for Covid-19 by the European Medicines Agency (EMA) or the American Food and Drug Administration (FDA).

Withdrawn, suspended or terminated studies

One RCT was found as withdrawn (NCT04343001) because grant not obtained. No suspended or terminated interventional studies were found on Aspirin in COVID-19 patients in ClinicalTrials.gov and EUdraCT registers.

Results of publications

There is one published RCT, as preprint, related to effectiveness and safety of Aspirin for Covid-19. Ghati et al. 2021 [264] published results from a single-center, four-arm parallel design, open-label randomized controlled trial (CTRI/2020/07/026791) on RT-PCR positive Covid-19 patients, ≥ 40 years and < 75 years of age, requiring hospitalisation [World Health Organization (WHO) Ordinal Scale for Clinical Improvement 3 to 5]. Patients were randomly assigned to either atorvastatin 40 mg (group A), aspirin 75 mg (group B), or both (group C) in addition to standard of care for 10 days or until discharge whichever was earlier or only standard of care (group D). The primary outcome variable was clinical deterioration to WHO Ordinal Scale for Clinical Improvement ≥ 6. The secondary outcome was change in serum inflammatory markers (C-reactive protein and Interleukin-6), and Troponin I. A total of 900 patients underwent randomization (with Groups A, B, C and D assigned 224, 225, 225 and 226 patients respectively). The primary outcome occurred in 25 (2.8%) patients: 7 (3.2%) in Group A, 3 (1.4%) in Group B, 8 (3.6%) in Group C and 7 (3.2%) in Group D. There was no difference in primary outcome across the study groups (p=0.463). Comparison of all patients who received atorvastatin or aspirin with the control group (Group D) also did not show any benefit [Atorvastatin: HR 1.0 (95% CI 0.41 - 2.46);
Aspirin: HR 0.7 (95% CI 0.27-1.81). The secondary outcomes revealed lower serum IL-6 among patients in Groups B and C. There was no excess of adverse events.

From 06 November 2020, Aspirin is being investigated in the world’s largest clinical trial of treatments for patients hospitalised with COVID-19. The Randomised Evaluation of COVi d-19 thERapy (RECOVERY) trial is taking place in 176 hospital sites across the UK, and has so far recruited over 16,000 patients, https://www.recoverytrial.net/news/aspirin-to-be-investigated-as-a-potential-treatment-for-covid-19.

Results are announced on June 08 2021 and published as preprint: a total of 7351 patients were randomised to aspirin 150 mg once daily and compared with 7541 patients randomised to usual care alone. There was no evidence that aspirin treatment reduced mortality. There was no significant difference in the primary endpoint of 28-day mortality (17% aspirin vs. 17% usual care; rate ratio 0.96 [95% confidence interval 0.89-1.04]; p=0.35). The results were consistent in all prespecified subgroups of patients. Patients allocated to aspirin had a slightly shorter duration of hospitalisation (median 8 days vs. 9 days) and a higher proportion were discharged from hospital alive within 28 days (75% vs. 74%; rate ratio 1.06; 95% CI 1.02-1.10; p=0.0062). Among those not on invasive mechanical ventilation at baseline, there was no significant difference in the proportion who progressed to invasive mechanical ventilation or death (21% vs. 22%; risk ratio 0.96; 95% CI 0.90-1.03; p=0.23). For every 1000 patients treated with aspirin, approximately 6 more patients experienced a major bleeding event and approximately 6 fewer experienced a thromboembolic (clotting) event, http://www.recoverytrial.net/news/recovery-trial-finds-aspirin-does-not-improve-survival-for-patients-hospitalised-with-covid-19. [265]

3.29 ZYESAMI™ (Aviptadil, RLF-100)

About the drug under consideration

Aviptadil (RLF-100) is a synthetic form of Human Vasoactive Intestinal Polypeptide (VIP). VIP acts on two receptors - VPAC1 and VPAC2, which are class B of G-protein coupled receptors (GPCRs). Aviptadil is found to reduce viral replication in lung tissues, release of inflammatory cytokines and alveolar epithelial cell apoptosis in patients with coronavirus infection. It is available both as intravenous and inhalational preparations. It is found useful in conditions like asthma, chronic obstructive pulmonary disease (COPD), sarcoidosis, pulmonary fibrosis, acute lung injury, pulmonary hypertension, erectile dysfunction and ARDS. Intravenous administration is associated with side effects like tachycardia, flushing, hypotension, diarrhoea and alterations in ECG (bigeminy) [266]. Recent observational studies showed that treatment with aviptadil is associated with rapid recovery in Coronavirus infected critically ill patients [266-269]. Aviptadil is not authorised in Covid-19 patients (EMA, FDA). On 14 July 2020 FDA granted Investigational New Drug (IND) permission for inhaled VIP and awarded FDA Orphan Drug designation for intravenous VIP, to use in patients with COVID-19.

RECOVERY

Studienarm mit Aspirin

Ergebnisse von 7.351 Pts im Aspirin Therapiearm

kein Unterschied bei Mortalität und Progression zu invasiver Beatmung

geringfügig kürzerer Spitalsaufenthalt

synthetisches menschliches vasoaktives intestinales Polypeptid (VIP)

soll Replikation des SARS-CoV-2-Virus in menschlichen Lungenzellen und Monozyten blockieren
Withdrawn, suspended or terminated studies

No withdrawn, suspended or terminated studies were found. Two randomised controlled trials are ongoing with inhaled aviptadil.

In one RCT nebulized RLF-100 (aviptadil) 100 μg is given 3 times daily for moderate and severe COVID-19, with estimated enrolment of 288 patients (NCT04360996- AVI COVID-2). Another RCT with inhaled aviptadil with estimated enrolment in 80 patients in Switzerland (NCT04536350) is not yet recruiting patients.

In one study related to Expanded access protocol (NCT04453839, SAMI CARE), aviptadil is given as 12 hour infusions at ascending doses of 50/100/150 pmol/kg/hr on 3 successive days. This expanded access protocol is designed to offer access to investigational use of RLF-100 to patients who do not qualify for inclusion in NCT04311697 either on the basis of specific medical exclusions or because there is no accessible study site available to the prospective participant.

Results of publications

Currently, published results were found from one RCT.

Youssef et al. 2021 [270] published 28-day interim report from a phase 2/3 RCT (NCT04311697 - COVID-AI) of intravenously-administered ZYESAM™ (aviptadil acetate, given as escalating doses of 50-150 pmol/kg/hr over 12 hours for 3 days) for the treatment of respiratory failure in critically-ill patients with COVID-19. At 28 days, aviptadil patients treated with high flow nasal cannula (HFNC) were 35% - 46% more likely to recover, return home, and survive to 28 days compared to placebo-treated patients, with a trend level of significance. Aviptadil patients additionally demonstrated a statistically significant and clinically important ten day reduction in hospitalization time.

On March 29, 2021 NeuroRx, Inc. reported 60-day results of the completed above mentioned RCT. Across all 196 treated patients and all 10 clinical sites, aviptadil met the primary endpoint for successful recovery from respiratory failure at days 28 (p=0.014) and 60 (p=0.013) and also demonstrated a meaningful benefit in survival (p<0.001) after controlling for ventilation status and treatment site. In addition, the prespecified analysis of recovery from respiratory failure is clinically and statistically significant in the 127 patients treated by High Flow Nasal Cannula (HFNC) (p=0.02), compared to those treated with mechanical or non-invasive ventilation at tertiary care hospitals. In this group aviptadil patients had a 71% chance of successful recovery by day 28 vs. 48% in the placebo group (p=0.017) and a 75% rate of successful recovery by day 60 vs. 55% in the placebo group (p=0.036). Eighty-four percent (84%) of HFNC patients treated at tertiary medical centers with aviptadil survived to day 60 compared with 60% of those treated with placebo (p=0.007), https://www.prnewswire.com/news-releases/neuorx-announces-yzesam-aviptadil-100-needle-free-primary-endpoint-of-its-phase-2b3-clinical-trial-and-also-demonstrates-a-meaningful-benefit-in-survival-from-critical-covid-19-301257291.html. On the basis of these findings, NeuroRx immediately applied to the United States Food and Drug Administration ("FDA") for Emergency Use Authorization (EUA).
3.30 Dimethyl fumarate

About the drug under consideration

Dimethyl fumarate (DMF) is thought to prevent NLRP3 inflammasome activation and the process of pyroptosis (inflammatory cell death) through its action on the protein gasdermin D. SARS-CoV-2 induces inflammasome activation and the degree of activation is thought to correlate with disease severity [271, 272]. DMF has demonstrated anti-viral and anti-inflamatory effects against SARS-CoV-2 in vitro [273].

In EU, dimethyl fumarate (Tecfidera) is authorised for the treatment of adult patients with relapsing remitting multiple sclerosis. DMF is not authorised in Covid-19 patients (EMA, FDA).

Withdrawn, suspended or terminated studies

No withdrawn, suspended or terminated studies were found.

Currently effectiveness and safety of dimethyl fumarate are investigated in the RECOVERY trial (NCT04381936), in an early phase assessment among patients hospitalised with COVID-19, https://www.recoverytrial.net/.

Results of publications

Currently, no published results were found from RCT related to dimethyl fumarate in COVID-19 patients.

3.31 Artesunate

About the drug under consideration

Artesunate is an artemisinin, a class of compounds originally derived from extracts of Artemisia annua (sweet wormwood) for the treatment of malaria and has since been adopted by the World Health Organization (WHO). The use of artesunate has surpassed the use of chloroquin for the treatment of malaria and more recently for COVID-19 [274]. The anti-viral mechanism of artesunate is thought to hinge on suppression of nuclear factor kappa beta (NF-κβ) activation. Artesunate could therefore mitigate the inflammatory response and potentially improve patient outcome.

Seven clinical trials have since been initiated to assess the efficacy of artesunate in different forms and administrations in reducing viral load and improving the prognosis of SARS-CoV-2-positive patients. A preliminary report documents a significant decrease in viral load and duration of hospitalisation, and improved absorption of lung lesions in COVID-19 patients treated with 10 daily doses of 60 mg artesunate in addition to standard treatment [274, 275].

Artesunate is not authorised in Covid-19 patients (EMA, FDA).
Withdrawn, suspended or terminated studies

No withdrawn, suspended or terminated studies were found for artesunate.

Effectiveness and safety of artesunate will be investigated in the WHO SOLIDARITY trial [276]

Results of publications

Currently, no published results were found from RCTs related to artesunate in COVID-19 patients.
References

People Over 80 Years of Age Induces Strong Humoral Immune Responses with Cross Neutralisation

BNT162b2 Vaccination in

Antibody evasion by the P.1 strain of SARS-CoV-2. Cell. DOI: 10.1016/j.cell.2021.03.055.

Antibody evasion by the P.1 strain of SARS-CoV-2. Cell. DOI: 10.1016/j.cell.2021.03.055.

BNT162b2 Vaccination in People Over 80 Years of Age Induces Strong Humoral Immune Responses with Cross Neutralisation
References

References

Talaschian M. and al. e. Tocilizumab Failed to Reduce Mortality in Severe COVID-19 Patients: Results From a Randomized Controlled Clinical Trial. Research Square. 2021;Preprint May.

Tanne J. Covid-19: FDA approves use of convalescent plasma to treat critically ill patients BMJ. 2020; Mar 26(368:m1256. doi: 10.1136/bmj.m1256.).

References

References

company limited antibody combination bamlanivimab etesevimab covid19 article 53 procedure conditions use conditions distribution patients targeted en pdf.

Salehzadeh P., Pourfarzi F. and Ataei S. The Impact of Colchicine on The COVID-19 Patients; A Clinical Trial Study. BMC infectious diseases. 2020. DOI: 10.21203/rs.3.rs-69374/v1.

